2 research outputs found

    First episode psychosis and schizophrenia are systemic neuro-immune disorders triggered by a biotic stimulus in individuals with reduced immune regulation and neuroprotection

    No full text
    There is evidence that schizophrenia is characterized by activation of the immune-inflammatory response (IRS) and compensatory immune-regulatory systems (CIRS) and lowered neuroprotection. Studies performed on antipsychotic-naïve first episode psychosis (AN-FEP) and schizophrenia (FES) patients are important as they may disclose the pathogenesis of FES. However, the protein–protein interaction (PPI) network of FEP/FES is not established. The aim of the current study was to delineate a) the characteristics of the PPI network of AN-FEP and its transition to FES; and b) the biological functions, pathways, and molecular patterns, which are over-represented in FEP/FES. Toward this end, we used PPI network, enrichment, and annotation analyses. FEP and FEP/FES are strongly associated with a response to a bacterium, alterations in Toll-Like Receptor-4 and nuclear factor-κB signaling, and the Janus kinases/signal transducer and activator of the transcription proteins pathway. Specific molecular complexes of the peripheral immune response are associated with microglial activation, neuroinflammation, and gliogenesis. FEP/FES is accompanied by lowered protection against inflammation, in part attributable to dysfunctional miRNA maturation, deficits in neurotrophin and Wnt/catenin signaling, and adherens junction organization. Multiple interactions between reduced brain derived neurotrophic factor, E-cadherin, and β-catenin and disrupted schizophrenia-1 (DISC1) expression increase the vulnerability to the neurotoxic effects of immune molecules, including cytokines and complement factors. In summary: FEP and FES are systemic neuro-immune disorders that are probably triggered by a bacterial stimulus which induces neuro-immune toxicity cascades that are overexpressed in people with reduced anti-inflammatory and miRNA protections, cell–cell junction organization, and neurotrophin and Wnt/catenin signaling

    New drug targets to prevent death due to stroke: A review based on results of protein-protein interaction network, enrichment, and annotation analyses

    No full text
    This study used established biomarkers of death from ischemic stroke (IS) versus stroke survival to perform network, enrichment, and annotation analyses. Protein-protein interaction (PPI) network analysis revealed that the backbone of the highly connective network of IS death consisted of IL6, ALB, TNF, SERPINE1, VWF, VCAM1, TGFB1, and SELE. Cluster analysis revealed immune and hemostasis subnetworks, which were strongly interconnected through the major switches ALB and VWF. Enrichment analysis revealed that the PPI immune subnetwork of death due to IS was highly associated with TLR2/4, TNF, JAK-STAT, NOD, IL10, IL13, IL4, and TGF-β1/SMAD pathways. The top biological and molecular functions and pathways enriched in the hemostasis network of death due to IS were platelet degranulation and activation, the intrinsic pathway of fibrin clot formation, the urokinase-type plasminogen activator pathway, post-translational protein phosphorylation, integrin cell-surface interactions, and the proteoglycan-integrin extracellular matrix complex (ECM). Regulation Explorer analysis of transcriptional factors shows: (a) that NFKB1, RELA and SP1 were the major regulating actors of the PPI network; and (b) hsa-mir-26-5p and hsa-16-5p were the major regulating microRNA actors. In conclusion, prevention of death due to IS should consider that current IS treatments may be improved by targeting VWF, the proteoglycan-integrin-ECM complex, TGF-β1/SMAD, NF-κB/RELA and SP1
    corecore