6 research outputs found

    Fighting for Recovery on Multiple Fronts: The Past, Present, and Future of Clinical Trials for Spinal Cord Injury

    Get PDF
    Through many decades of preclinical research, great progress has been achieved in understanding the complex nature of spinal cord injury (SCI). Preclinical research efforts have guided and shaped clinical trials, which are growing in number by the year. Currently, 1,149 clinical trials focused on improving outcomes after SCI are registered in the U.S. National Library of Medicine at ClinicalTrials.gov. We conducted a systematic analysis of these SCI clinical trials, using publicly accessible data downloaded from ClinicalTrials.gov. After extracting all available data for these trials, we categorized each trial according to the types of interventions being tested and the types of outcomes assessed. We then evaluated clinical trial characteristics, both globally and by year, in order to understand the areas of growth and change over time. With regard to clinical trial attributes, we found that most trials have low enrollment, only test single interventions, and have limited numbers of primary outcomes. Some gaps in reporting are apparent; for instance, over 75% of clinical trials with Completed status do not have results posted, and the Phase of some trials is incorrectly classified as Not applicable despite testing a drug or biological compound. When analyzing trials based on types of interventions assessed, we identified the largest representation in trials testing rehab/training/exercise, neuromodulation, and behavioral modifications. Most highly represented primary outcomes include motor function of the upper and lower extremities, safety, and pain. The most highly represented secondary outcomes include quality of life and pain. Over the past 15 years, we identified increased representation of neuromodulation and rehabilitation trials, and decreased representation of drug trials. Overall, the number of new clinical trials initiated each year continues to grow, signifying a hopeful future for the clinical treatment of SCI. Together, our work provides a comprehensive glimpse into the past, present, and future of SCI clinical trials, and suggests areas for improvement in clinical trial reporting

    Neuropathic pain modulation after spinal cord injury by breathing-controlled electrical stimulation (BreEStim) is associated with restoration of autonomic dysfunction

    No full text
    Jay Karri,1 Shengai Li,1 Larry Zhang,1 Yen-Ting Chen,1 Argyrios Stampas,1 Sheng Li1,2 1Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; 2TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, USA Background: Recent findings have implicated supraspinal origins from the pain neuromatrix–central autonomic network (PNM–CAN) in the generation of neuropathic pain (NP) after spinal cord injury (SCI). The aim of this study was to further investigate the theorized PNM–CAN mechanisms in persons with SCI by using a centrally directed pain intervention, provided by breathing-controlled electrical stimulation (BreEStim), to measure resultant autonomic changes measured by time and frequency domain heart rate variability (HRV) analysis.Methods: Null and active BreEStim interventions were administered to SCI+NP subjects (n=10) in a random order. HRV data and VAS pain scores were collected at resting pre-test and 30 minutes post-test time points. Resting HRV data were also collected from SCI–NP subjects (n=11).Results: SCI+NP subjects demonstrated a lower baseline HRV and parasympathetic tone, via SD of the normal-to-normal intervals (SDNN) and low frequency (LF) parameters, compared with SCI–NP subjects. However, following active BreEStim, SCI+NP subjects exhibited an increase in HRV and parasympathetic tone, most notably via pairs of successive R–R beat lengths varying by greater than 50 ms (NN50) and proportion of NN50 for total number of beats (pNN50) parameters along with lower VAS scores. Additionally, the post-test SCI+NP group was found to have a statistically comparable autonomic profile to the SCI–NP group across all HRV variables, including SDNN and LF parameters.Conclusion: The analgesic effects of active BreEStim in SCI+NP subjects were associated with restoration of autonomic dysfunction in this population. Keywords: autonomic dysfunction, spinal cord injury, neuropathic pain, BreEStim, electrical stimulation, heart rate variabilit

    Table_1_Fighting for recovery on multiple fronts: The past, present, and future of clinical trials for spinal cord injury.xlsx

    No full text
    Through many decades of preclinical research, great progress has been achieved in understanding the complex nature of spinal cord injury (SCI). Preclinical research efforts have guided and shaped clinical trials, which are growing in number by the year. Currently, 1,149 clinical trials focused on improving outcomes after SCI are registered in the U.S. National Library of Medicine at ClinicalTrials.gov. We conducted a systematic analysis of these SCI clinical trials, using publicly accessible data downloaded from ClinicalTrials.gov. After extracting all available data for these trials, we categorized each trial according to the types of interventions being tested and the types of outcomes assessed. We then evaluated clinical trial characteristics, both globally and by year, in order to understand the areas of growth and change over time. With regard to clinical trial attributes, we found that most trials have low enrollment, only test single interventions, and have limited numbers of primary outcomes. Some gaps in reporting are apparent; for instance, over 75% of clinical trials with “Completed” status do not have results posted, and the Phase of some trials is incorrectly classified as “Not applicable” despite testing a drug or biological compound. When analyzing trials based on types of interventions assessed, we identified the largest representation in trials testing rehab/training/exercise, neuromodulation, and behavioral modifications. Most highly represented primary outcomes include motor function of the upper and lower extremities, safety, and pain. The most highly represented secondary outcomes include quality of life and pain. Over the past 15 years, we identified increased representation of neuromodulation and rehabilitation trials, and decreased representation of drug trials. Overall, the number of new clinical trials initiated each year continues to grow, signifying a hopeful future for the clinical treatment of SCI. Together, our work provides a comprehensive glimpse into the past, present, and future of SCI clinical trials, and suggests areas for improvement in clinical trial reporting.</p

    Data_Sheet_1_Fighting for recovery on multiple fronts: The past, present, and future of clinical trials for spinal cord injury.docx

    No full text
    Through many decades of preclinical research, great progress has been achieved in understanding the complex nature of spinal cord injury (SCI). Preclinical research efforts have guided and shaped clinical trials, which are growing in number by the year. Currently, 1,149 clinical trials focused on improving outcomes after SCI are registered in the U.S. National Library of Medicine at ClinicalTrials.gov. We conducted a systematic analysis of these SCI clinical trials, using publicly accessible data downloaded from ClinicalTrials.gov. After extracting all available data for these trials, we categorized each trial according to the types of interventions being tested and the types of outcomes assessed. We then evaluated clinical trial characteristics, both globally and by year, in order to understand the areas of growth and change over time. With regard to clinical trial attributes, we found that most trials have low enrollment, only test single interventions, and have limited numbers of primary outcomes. Some gaps in reporting are apparent; for instance, over 75% of clinical trials with “Completed” status do not have results posted, and the Phase of some trials is incorrectly classified as “Not applicable” despite testing a drug or biological compound. When analyzing trials based on types of interventions assessed, we identified the largest representation in trials testing rehab/training/exercise, neuromodulation, and behavioral modifications. Most highly represented primary outcomes include motor function of the upper and lower extremities, safety, and pain. The most highly represented secondary outcomes include quality of life and pain. Over the past 15 years, we identified increased representation of neuromodulation and rehabilitation trials, and decreased representation of drug trials. Overall, the number of new clinical trials initiated each year continues to grow, signifying a hopeful future for the clinical treatment of SCI. Together, our work provides a comprehensive glimpse into the past, present, and future of SCI clinical trials, and suggests areas for improvement in clinical trial reporting.</p
    corecore