7 research outputs found

    Gaia Focused Product Release: Spatial distribution of two diffuse interstellar bands

    No full text
    Diffuse interstellar bands (DIBs) are absorption features seen in optical and infrared spectra of stars and extragalactic objects that are probably caused by large and complex molecules in the galactic interstellar medium (ISM). Here we investigate the Galactic distribution and properties of two DIBs identified in almost six million stellar spectra collected by the Gaia Radial Velocity Spectrometer. These measurements constitute a part of the Gaia Focused Product Release to be made public between the Gaia DR3 and DR4 data releases. In order to isolate the DIB signal from the stellar features in each individual spectrum, we identified a set of 160 000 spectra at high Galactic latitudes (|b| ≄ 65) covering a range of stellar parameters which we consider to be the DIB-free reference sample. Matching each target spectrum to its closest reference spectra in stellar parameter space allowed us to remove the stellar spectrum empirically, without reference to stellar models, leaving a set of six million ISM spectra. Using the star's parallax and sky coordinates, we then allocated each ISM spectrum to a voxel (VOlume piXEL) on a contiguous three-dimensional grid with an angular size of 1.8 (level 5 HEALPix) and 29 unequally sized distance bins. Identifying the two DIBs at 862.1 nm (λ862.1) and 864.8 nm (λ864.8) in the stacked spectra, we modelled their shapes and report the depth, central wavelength, width, and equivalent width (EW) for each, along with confidence bounds on these measurements. We then explored the properties and distributions of these quantities and compared them with similar measurements from other surveys. Our main results are as follows: (1) the strength and spatial distribution of the DIB λ862.1 are very consistent with what was found in Gaia DR3, but for this work we attained a higher signal-to-noise ratio in the stacked spectra to larger distances, which allowed us to trace DIBs in the outer spiral arm and beyond the Scutum-Centaurus spiral arm; (2) we produced an all-sky map below ±65 of Galactic latitude to ∌4000 pc of both DIB features and their correlations; (3) we detected the signals of DIB λ862.1 inside the Local Bubble (â‰Č200 pc); and (4) there is a reasonable correlation with the dust reddening found from stellar absorption and EWs of both DIBs with a correlation coefficient of 0.90 for λ862.1 and 0.77 for λ864.8.</p

    <i>Gaia</i> Focused Product Release: Radial velocity time series of long-period variables

    No full text
    Context. The third Gaia Data Release (DR3) provided photometric time series of more than 2 million long-period variable (LPV) candidates. Anticipating the publication of full radial-velocity data planned with Data Release 4, this Focused Product Release (FPR) provides radial-velocity time series for a selection of LPV candidates with high-quality observations. Aims. We describe the production and content of the Gaia catalog of LPV radial-velocity time series, and the methods used to compute the variability parameters published as part of the Gaia FPR. Methods. Starting from the DR3 catalog of LPV candidates, we applied several filters to construct a sample of sources with high-quality radial-velocity measurements. We modeled their radial-velocity and photometric time series to derive their periods and amplitudes, and further refined the sample by requiring compatibility between the radial-velocity period and at least one of the G, GBP, or GRP photometric periods. Results. The catalog includes radial-velocity time series and variability parameters for 9614 sources in the magnitude range 6 â‰Č G/mag â‰Č 14, including a flagged top-quality subsample of 6093 stars whose radial-velocity periods are fully compatible with the values derived from the G, GBP, and GRP photometric time series. The radial-velocity time series contain a mean of 24 measurements per source taken unevenly over a duration of about three years. We identify the great majority of the sources (88%) as genuine LPV candidates, with about half of them showing a pulsation period and the other half displaying a long secondary period. The remaining 12% of the catalog consists of candidate ellipsoidal binaries. Quality checks against radial velocities available in the literature show excellent agreement. We provide some illustrative examples and cautionary remarks. Conclusions. The publication of radial-velocity time series for almost ten thousand LPV candidates constitutes, by far, the largest such database available to date in the literature. The availability of simultaneous photometric measurements gives a unique added value to the Gaia catalog

    <i>Gaia</i> Focused Product Release: Sources from Service Interface Function image analysis

    No full text
    Context. Gaia’s readout window strategy is challenged by very dense fields in the sky. Therefore, in addition to standard Gaia observations, full Sky Mapper (SM) images were recorded for nine selected regions in the sky. A new software pipeline exploits these Service Interface Function (SIF) images of crowded fields (CFs), making use of the availability of the full two-dimensional (2D) information. This new pipeline produced half a million additional Gaia sources in the region of the omega Centauri (ω Cen) cluster, which are published with this Focused Product Release. We discuss the dedicated SIF CF data reduction pipeline, validate its data products, and introduce their Gaia archive table. Aims. Our aim is to improve the completeness of the Gaia source inventory in a very dense region in the sky, ω Cen. Methods. An adapted version of Gaia’s Source Detection and Image Parameter Determination software located sources in the 2D SIF CF images. These source detections were clustered and assigned to new SIF CF or existing Gaia sources by Gaia s cross-match software. For the new sources, astrometry was calculated using the Astrometric Global Iterative Solution software, and photometry was obtained in the Gaia DR3 reference system. We validated the results by comparing them to the public Gaia DR3 catalogue and external Hubble Space Telescope data. Results. With this Focused Product Release, 526 587 new sources have been added to the Gaia catalogue in ω Cen. Apart from positions and brightnesses, the additional catalogue contains parallaxes and proper motions, but no meaningful colour information. While SIF CF source parameters generally have a lower precision than nominal Gaia sources, in the cluster centre they increase the depth of the combined catalogue by three magnitudes and improve the source density by a factor of ten. Conclusions. This first SIF CF data publication already adds great value to the Gaia catalogue. It demonstrates what to expect for the fourth Gaia catalogue, which will contain additional sources for all nine SIF CF regions

    <i>Gaia</i> Data Release 3

    No full text
    Gaia Data Release 3 provides novel flux-calibrated low-resolution spectrophotometry for ≃220 million sources in the wavelength range 330 nm ≀ λ ≀ 1050 nm (XP spectra). Synthetic photometry directly tied to a flux in physical units can be obtained from these spectra for any passband fully enclosed in this wavelength range. We describe how synthetic photometry can be obtained from XP spectra, illustrating the performance that can be achieved under a range of different conditions – for example passband width and wavelength range – as well as the limits and the problems affecting it. Existing top-quality photometry can be reproduced within a few per cent over a wide range of magnitudes and colour, for wide and medium bands, and with up to millimag accuracy when synthetic photometry is standardised with respect to these external sources. Some examples of potential scientific application are presented, including the detection of multiple populations in globular clusters, the estimation of metallicity extended to the very metal-poor regime, and the classification of white dwarfs. A catalogue providing standardised photometry for ≃2.2 × 108 sources in several wide bands of widely used photometric systems is provided (Gaia Synthetic Photometry Catalogue; GSPC) as well as a catalogue of ≃105 white dwarfs with DA/non-DA classification obtained with a Random Forest algorithm (Gaia Synthetic Photometry Catalogue for White Dwarfs; GSPC-WD)

    <i>Gaia</i> Data Release 3. Summary of the content and survey properties

    No full text
    Context.We present the third data release of the European Space Agency’sGaiamission,GaiaDR3. This release includes a large variety of new data products, notably a much expanded radial velocity survey and a very extensive astrophysical characterisation ofGaiasources.Aims.We outline the content and the properties ofGaiaDR3, providing an overview of the main improvements in the data processing in comparison with previous data releases (where applicable) and a brief discussion of the limitations of the data in this release.Methods.TheGaiaDR3 catalogue is the outcome of the processing of raw data collected with theGaiainstruments during the first 34 months of the mission by theGaiaData Processing and Analysis Consortium.Results.TheGaiaDR3 catalogue contains the same source list, celestial positions, proper motions, parallaxes, and broad band photometry in theG,GBP, andGRPpass-bands already present in the Early Third Data Release,GaiaEDR3.GaiaDR3 introduces an impressive wealth of new data products. More than 33 million objects in the rangesGRVS < 14 and 3100 < Teff < 14 500, have new determinations of their mean radial velocities based on data collected byGaia. We provideGRVSmagnitudes for most sources with radial velocities, and a line broadening parameter is listed for a subset of these. MeanGaiaspectra are made available to the community. TheGaiaDR3 catalogue includes about 1 million mean spectra from the radial velocity spectrometer, and about 220 million low-resolution blue and red prism photometer BP/RP mean spectra. The results of the analysis of epoch photometry are provided for some 10 million sources across 24 variability types.GaiaDR3 includes astrophysical parameters and source class probabilities for about 470 million and 1500 million sources, respectively, including stars, galaxies, and quasars. Orbital elements and trend parameters are provided for some 800 000 astrometric, spectroscopic and eclipsing binaries. More than 150 000 Solar System objects, including new discoveries, with preliminary orbital solutions and individual epoch observations are part of this release. Reflectance spectra derived from the epoch BP/RP spectral data are published for about 60 000 asteroids. Finally, an additional data set is provided, namely theGaiaAndromeda Photometric Survey, consisting of the photometric time series for all sources located in a 5.5 degree radius field centred on the Andromeda galaxy.Conclusions.This data release represents a major advance with respect toGaiaDR2 andGaiaEDR3 because of the unprecedented quantity, quality, and variety of source astrophysical data. To date this is the largest collection of all-sky spectrophotometry, radial velocities, variables, and astrophysical parameters derived from both low- and high-resolution spectra and includes a spectrophotometric and dynamical survey of SSOs of the highest accuracy. The non-single star content surpasses the existing data by orders of magnitude. The quasar host and galaxy light profile collection is the first such survey that is all sky and space based. The astrophysical information provided inGaiaDR3 will unleash the full potential ofGaia’s exquisite astrometric, photometric, and radial velocity surveys
    corecore