8,284 research outputs found
Holographic End-Point of Spatially Modulated Phase Transition
In the previous paper [arXiv:0911.0679], we showed that the
Reissner-Nordstrom black hole in the 5-dimensional anti-de Sitter space coupled
to the Maxwell theory with the Chern-Simons term is unstable when the
Chern-Simons coupling is sufficiently large. In the dual conformal field
theory, the instability suggests a spatially modulated phase transition. In
this paper, we construct and analyze non-linear solutions which describe the
end-point of this phase transition. In the limit where the Chern-Simons
coupling is large, we find that the phase transition is of the second order
with the mean field critical exponent. However, the dispersion relation with
the Van Hove singularity enhances quantum corrections in the bulk, and we argue
that this changes the order of the phase transition from the second to the
first. We compute linear response functions in the non-linear solution and find
an infinite off-diagonal DC conductivity in the new phase.Comment: 21 pages, 22 figures. v2: a note and a reference adde
BRST extension of the Faddeev model
The Faddeev model is a second class constrained system. Here we construct its
nilpotent BRST operator and derive the ensuing manifestly BRST invariant
Lagrangian. Our construction employs the structure of Stuckelberg fields in a
nontrivial fashion.Comment: 4 pages, new references adde
Conformations and charge transport characteristics of biphenyldithiol self-assembled-monolayer molecular electronic devices: A multiscale computational study
We report a computational study of conformations and charge transport characteristics of biphenyldithiol (BPDT) monolayers in the (sqrt(3)×sqrt(3))R30° packing ratio sandwiched between Au(111) electrodes. From force-field molecular-dynamics and annealing simulations of BPDT self-assembled monolayers (SAMs) with up to 100 molecules on a Au(111) substrate, we identify an energetically favorable herringbone-type SAM packing configuration and a less-stable parallel packing configuration. Both SAMs are described by the (2sqrt(3)×sqrt(3))R30° unit cell including two molecules. With subsequent density-functional theory calculations of one unit cell of the (i) herringbone SAM with the molecular tilt angle theta[approximate]15°, (ii) herringbone SAM with theta[approximate]30°, and (iii) parallel SAM with theta[approximate]30°, we confirm that the herringbone packing configuration is more stable than the parallel one but find that the energy variation with respect to the molecule tilting within the herringbone packing is very small. Next, by capping these SAMs with the top Au(111) electrode, we prepare three molecular electronic device models and calculate their coherent charge transport properties within the matrix Green's function approach. Current–voltage (I–V) curves are then obtained via the Landauer–Büttiker formula. We find that at low-bias voltages (|V|~0.5 V), the I–V characteristics of the three models show noticeable differences due to different phenyl band structures. We thus conclude that the BPDT SAM I–V characteristics in the low-bias voltage region are mainly determined by the Si–Au interaction within the individual molecule-electrode contact, while both intramolecular conformation and intermolecular interaction can affect the BPDT SAM I–V characteristics in the high-bias voltage region
Possible performance improvement in [2]catenane molecular electronic switches
Mechanically interlocked bistable supramolecular complexes are promising candidates of molecular electronics. Applying a multiscale computational approach, here we study the coherent charge transport properties of catenane monolayers sandwiched between Cu(111) electrodes. We demonstrate the robust nature of electrical switching behavior with respect to the variations in the monolayer packing density and the type of electrodes, as well as the thermal fluctuations of the molecules. We propose that the asymmetry of molecule-electrode barriers can be utilized to improve the switching ratio
Algorithms for fitting cylindrical objects to sparse range point clouds for rapid workspace modeling
Current methods for construction site modeling employ large, expensive laser range scanners that produce dense range point clouds of a scene from different perspectives. While useful for many purposes, this approach is not feasible for real-time applications, which would enable automated obstacle avoidance and semiautomated equipment control, and could improve both safety and productivity significantly. This paper presents human-assisted rapid environmental modeling algorithms for construction, and focuses on cylindrical object fitting algorithms. The presented algorithms address construction site material of cylindrical shape. Experiments were conducted to determine: (1) the effect of the ratio of length to diameter of the cylinder to the accuracy of the results, (2) the effect of the angle of view to the accuracy of the results, (3) the minimum number of scanned points required to give adequate modeling accuracy for cylinders of various length to diameter ratios. The results indicate that the proposed algorithms can model geometric primitives used in a construction site rapidly and with sufficient accuracy for automated obstacle avoidance and equipment control functions
BRST invariance and de Rham-type cohomology of 't Hooft-Polyakov monopole
We exploit the 't Hooft-Polyakov monopole to define closed algebra of the
quantum field operators and the BRST charge . In the first-class
configuration of the Dirac quantization, by including the -exact
gauge fixing term and the Faddeev-Popov ghost term, we find the BRST invariant
Hamiltonian to investigate the de Rham-type cohomology group structure for the
monopole system. The Bogomol'nyi bound is also discussed in terms of the
first-class topological charge defined on the extended internal 2-sphere.Comment: 8 page
On the Design of Secure Full-Duplex Multiuser Systems under User Grouping Method
Consider a full-duplex (FD) multiuser system where an FD base station (BS) is
designed to simultaneously serve both downlink users and uplink users in the
presence of half-duplex eavesdroppers (Eves). Our problem is to maximize the
minimum secrecy rate (SR) among all legitimate users by proposing a novel user
grouping method, where information signals at the FD-BS are accompanied with
artificial noise to degrade the Eves' channel. The SR problem has a highly
nonconcave and nonsmooth objective, subject to nonconvex constraints due to
coupling between the optimization variables. Nevertheless, we develop a
path-following low-complexity algorithm, which invokes only a simple convex
program of moderate dimensions at each iteration. We show that our
path-following algorithm guarantees convergence at least to a local optima. The
numerical results demonstrate the merit of our proposed approach compared to
existing well-known ones, i.e., conventional FD and nonorthogonal multiple
access.Comment: 6 pages, 3 figure
Primitives Merging for Rapid 3D Modeling
Developing three dimensional models of infrastructure and construction in progress can be useful for designing modifications, for tracking work completed, and for facilitating advanced equipment control and safety functions. An emerging 3D modeling method involves scanning scenes with laser ranging devices. The resulting dense or sparse point clouds are converted to primitive geometric objects. Merging those objects is useful for visualization and advanced manipulation. Factors that influence this merging process are identified here. Heuristics are proposed for automated merging, and initial results presented
First-principles study of the switching mechanism of [2]catenane molecular electronic devices
We present a first-principles study of the coherent charge transport properties of bistable [2]catenane molecular monolayers sandwiched between Au(111) electrodes. We find that conduction channels around the Fermi level are dominated by the two highest occupied molecular orbital levels from tetrathiafulvalene (TTF) and dioxynaphthalene (DNP) and the two lowest unoccupied molecular orbital levels from tetracationic cyclophane (CBPQT(4+)), and the OFF to ON switching results from the energetic shifts of these orbitals as CBPQT(4+) moves from TTF to DNP. We show that the superposition principle can be adopted for predicting the function of the composite device
- …
