
Holographic endpoint of spatially modulated phase transition

Hirosi Ooguri and Chang-Soon Park

California Institute of Technology, Pasadena, California 91125, USA, and Institute for the Physics
and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8586, Japan

(Received 1 September 2010; published 2 December 2010)

In a previous paper [S. Nakamura, H. Ooguri, and C. S. Park, Phys. Rev. D 81, 044018 (2010)], we

showed that the Reissner-Nordström black hole in the five-dimensional anti–de Sitter space coupled to the

Maxwell theory with the Chern-Simons term is unstable when the Chern-Simons coupling is sufficiently

large. In the dual conformal field theory, the instability suggests a spatially modulated phase transition. In

this paper, we construct and analyze nonlinear solutions which describe the endpoint of this phase

transition. In the limit where the Chern-Simons coupling is large, we find that the phase transition is of the

second order with the mean field critical exponent. However, the dispersion relation with the Van Hove

singularity enhances quantum corrections in the bulk, and we argue that this changes the order of the

phase transition from the second to the first. We compute linear response functions in the nonlinear

solution and find an infinite off-diagonal DC conductivity in the new phase.

DOI: 10.1103/PhysRevD.82.126001 PACS numbers: 11.25.Tq

I. INTRODUCTION

In the previous paper [1], together with Shin Nakamura,
we pointed out that the Maxwell theory with the Chern-
Simons term in the five-dimensional Minkowski space is
tachyonic when a constant electric field is turned on. A
similar mechanism leads to an instability of a charged
black hole in the five-dimensional anti–de Sitter space
(AdS5) if the Chern-Simons coupling for the Maxwell field
is sufficiently large. Interestingly, the instability modes
carry nonzero momenta along the boundary of AdS5.
This suggests that there is a novel phase transition in the
holographically dual field theory at finite chemical poten-
tial, where order parameters acquire spatially modulated
expectation values.

The analysis of our previous paper was at the linearized
level, and what we observed was an onset of the phase
transition. To understand the nature of the new phase which
emerges as the endpoint of the instability, we need to
examine full nonlinear solutions to the equations of motion
in the bulk. In this paper, we construct such solutions in the
limit where the Chern-Simons coupling is large and back-
reaction of the Maxwell field to the metric is negligible.
This is analogous to the probe limit employed in [2]. Using
the solutions, we compute the expectation values of the
order parameters near the phase transition temperature and
find that the phase transition is of the second order with the
mean field critical exponent.

The Chern-Simons term modifies the dispersion relation
in such a way that the density of states per unit energy
diverges at some nonzero momenta, causing the Van Hove
singularity. Moreover, this happens even above the phase
transition temperature. It suggests that quantum correc-
tions to the phase transition can be significant. We argue
that the order of the phase transition is changed from the
second to the first due to quantum effects in the bulk.

The rest of the paper is organized as follows. In Sec. II,
as a warm-up exercise, we will discuss nonlinear solutions
to the Maxwell-Chern-Simons theory in the five-
dimensional Minkowski space. In Sec. III, we turn to the
theory in the full black hole geometry and construct
nonlinear solutions in the limit where the Chern-Simons
coupling is large. We find that the phase transition is of
the second order with the mean field exponent. In Sec. IV,
we discuss quantum corrections to the phase transition
and argue the order of the phase transition is changed.
We evaluate the linear response of the system in Sec. V.
In the Appendix, we discuss nonlinear solutions in
AdS2 � R3, which is the near horizon limit of the extremal
black hole.

II. MAXWELL-CHERN-SIMONS THEORY IN
MINKOWSKI SPACE

In this section, we consider the Maxwell theory with the
Chern-Simons term in the five-dimensional Minkowski
space. The Lagrangian is given by

L ¼ � 1

4
FIJF

IJ þ �

3!
�IJKLMAIFJKFLM; (2.1)

where I; J; . . . run from 0 to 4. The equations of motion are

@JF
JI þ �

2
�IJKLMFJKFLM ¼ 0: (2.2)

In particular, the time component of the above can be
written as the Gauss law,

@A�
A ¼ 0; where �A ¼ �FA0 þ ��ABCDABFCD;

(2.3)

where the indices A; B; . . . run from 1 to 4.
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A constant electric field is a solution to the equations of
motion. However, as shown in [1], there are unstable
modes in the following range of momentum,

0< j ~kj< 4�E; (2.4)

where E is the background electric field and ~k is a projec-
tion of the spatial momentum onto the plane orthogonal the
electric field. Let us describe the instability mode found in
[1]. If the electric field is in the x1 direction, it is convenient
to decompose the five-dimensional momentum as ðp�; kiÞ,
� ¼ 0, 1 and i ¼ 2, 3, 4. Consider a linear fluctuation of
the Maxwell field of the form

ai ¼ cð�Þ
i eip�x

�þikix
i
; (2.5)

where cð�Þ
i are eigenvectors of �ijkkj,

�ijkkjc
ð�Þ
k ¼ �j ~kjcð�Þ

i ; (2.6)

obeying the transverse gauge condition kic
ð�Þ
i ¼ 0.

Substituting (2.5) into the equations of motion (2.2), we
find the dispersion relation for this mode as

ðp0Þ2 � ðp1Þ2 ¼ k2 � 4�Ek; k ¼ j ~kj: (2.7)

This means that it is tachyonic for the range (2.4) if we

choose cðþÞ
i .

A. Nonlinear solutions

We can find a nonlinear solution triggered by the per-

turbation ai ¼ cðþÞ
i eip�x

�þikix
i
as follows. Although the

unstable mode breaks the translational invariance along

the direction of the momentum ~k, it is invariant under

some combination of translation along ~k and rotation in
the transverse plane. The solution is also translationally
invariant in the transverse directions. It is then natural to
look for a nonlinear solution with the same set of symme-
tries, and we choose the following ansatz,

A0 ¼ 0; A2 ¼ gðtÞ; A1 ¼ A1ðtÞ;
A3 þ iA4 ¼ hðtÞe�ikx2 :

(2.8)

We denote the time coordinate by x0 or t interchangeably.
The equation of motion for the function gðtÞ sets gðtÞ ¼ 0.
The remaining equations of motion become

€A 1ðtÞ � 4�khðtÞ _hðtÞ ¼ 0;

€hðtÞ þ k2hðtÞ þ 4�k _A1ðtÞhðtÞ ¼ 0:
(2.9)

Note that the momentum �1 conjugate to A1 is given by

�1 ¼ � _A1ðtÞ þ 2�khðtÞ2: (2.10)

The first equation of (2.9) can be written as @�1=@t ¼ 0
and solved by �1 ¼ constant. The integration constant is
fixed as �1 ¼ E by the initial configuration where h ¼ 0
and �1 ¼ � _A1 ¼ E.

From (2.9) and (2.10),

€hðtÞ þ k2hðtÞ � 4�kEhðtÞ þ 8�2k2h3ðtÞ ¼ 0: (2.11)

This can be integrated and yields

1
2
_hðtÞ2 � 1

2kð4�E� kÞhðtÞ2 þ 2�2k2hðtÞ4 ¼ constant:

(2.12)

This is equal to the energy density H of the electromag-
netic field,

H ¼ 1
2F0AF0A þ 1

4FABFAB; (2.13)

minus the energy density 1
2E

2 of the constant electric field.

Thus, we are effectively considering a classical particle
with coordinate hðtÞ moving in the potential

U ¼ �1
2kð4�E� kÞh2 þ 2�2k2h4: (2.14)

This is a double well potential for 0< k< 4�E as in
Fig. 1. The original homogeneous phase corresponds to
the point h ¼ 0, which is unstable. If we add some pertur-
bation, the amplitude hðtÞ starts oscillating as in the figure.

B. The final configuration

We have seen that the instability induces an oscillatory
solution in the potential (2.14). Suppose that our system is
weakly coupled to a heat reservoir with a large heat ca-
pacity at very low temperature. Eventually the oscillation
will fade away by transferring its energy to the heat reser-
voir and the system will land on its lowest energy state. Let
us try to find out the final configuration of this process.
For the static solutions,

h ¼ � 1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�E� k

2k

s
; (2.15)

which stay at one of the two minima of the potential, the
energy density H is given by

H ¼ Uþ 1

2
E2 ¼ k

4�

�
E� k

8�

�
: (2.16)

Especially, the energy density vanishes when k ¼ 0.
Figure 2 shows the amplitude h and the energy density

FIG. 1 (color online). Double well potential U for a classical
particle with coordinate h. If the particle starts slightly outside of
the origin, say, at A, then the particle will oscillate between A and
another point B with the same potential energy.
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H change as functions of k. Since the energy density is
monotonically increasing in k, we expect that solutions
with k � 0 are unstable and decay to the solution with k ¼
0. Note that, although h diverges as k goes to 0, the field
strength E vanishes in this limit. The constant electric field
in the initial configuration is wiped out in the k ¼ 0
solution and the final configuration will be the trivial
vacuum state with E ¼ 0.

We can directly check that the static solution (2.15) with
k � 0 is unstable. The solution corresponds to the gauge

field configuration, Að0Þ
1 ðtÞ ¼ k

4� t and Að0Þ
3 þ iAð0Þ

4 ¼
1
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4�E� kÞ=ð2kÞp
e�ikx2 . Let us add a small perturbation

Að0Þ ! Að0Þ þ a to this background. Assuming that the
modes depend only on t and x2 with a0 ¼ 0, the equations
of motion become

ha1 þ 2�khðeikx2@0aþ þ e�ikx2@0 �aþÞ ¼ 0;

ha2 ¼ 0; haþ þ ik@2aþ � 4�khe�ikx2@0a1 ¼ 0;

(2.17)

where h ¼ �@20 þ @22 and aþ ¼ a3 þ ia4. The coeffi-

cients of the equations have x2 dependence, which can be
removed by using two real variables ~a3 and ~a4 such that
aþ ¼ e�ikx2ð~a3 þ i~a4Þ in place of a. Assuming the t and x2
dependence of the fields a1, ~a3, and ~a4 to be of the form
e�i!tþiqx2 and that a2 ¼ 0, a nontrivial solution exists if
and only if

ð!2 � q2Þ½!4 � 2!2ðq2 þ kð4�E� kÞÞ þ q2ðq2 � k2Þ�
¼ 0: (2.18)

From the second factor, we see that the product of
two solutions for !2 is q2ðq2 � k2Þ, which is negative for
0< q< k. Thus one of the two roots of !2 must be
negative, representing an unstable mode. Since the mo-
mentum q of the instability mode is in the range 0< q< k,
we expect that the solution decays toward the lowest
energy state with momentum k ¼ 0.

We have also performed numerical analysis of time
dependent solutions with the initial configuration of con-
stant electric field E, assuming that solutions depend only
on the coordinates t and x2. We found that a small localized
perturbation generates a domain where the electric and
magnetic fields fluctuate and that the domain expands at

the speed of light. The magnetic field in the domain carries
a range of momenta, which tends to move to the zero
momentum state. The strength of the electric field decays
as the domain expands, suggesting that the system will
eventually settle down to the trivial state with E ¼ 0.
To summarize, the instability of the constant electric

field in the Maxwell-Chern-Simons theory in the five-
dimensional Minkowski space, which we found in our
previous paper [1], leads to the trivial vacuum state with
no background field strength FIJ ¼ 0. This reminds us of
the Schwinger mechanism where a constant electric field is
screened by virtual production of electron-positron pairs.
This result should be contrasted with the corresponding

instability of the charged black hole in AdS5, which we
will study in the next section. There, we do not expect the
background electric field to disappear since the electric
charge of the black hole is fixed by the chemical potential
at the boundary. Indeed, we will find stable solutions with
nonzero momentum k in this case.

III. MAXWELL-CHERN-SIMONS THEORY IN THE
AdS5 BLACK HOLE GEOMETRY

In this section, we will construct nonlinear solutions
which describe the endpoint of the instability of the
charged black hole in AdS5. Since the Maxwell field con-
tributes to the energy-momentum tensor, in general we
need to analyze the coupled Einstein and Maxwell equa-
tions. Here we will simplify the problem by taking a limit
where we can ignore the backreaction of the Maxwell field
to the metric.
The Lagrangian density for the Maxwell-Chern-Simons

theory is given by

L ¼ � 1

4
FIJF

IJ þ �

3!
ffiffiffiffiffiffiffi�g

p �IJKLMAIFJKFLM: (3.1)

Rescaling the gauge field as ~A ¼ �A, the Lagrangian
density becomes

L ¼ 1

�2

�
�1

4
~FIJ

~FIJþ 1

3!
ffiffiffiffiffiffiffi�g

p �IJKLM ~AI
~FJK

~FLM

�
: (3.2)

When � is large, for a solution with finite ~A, the energy-
momentum tensor is of the orderOð1=�2Þ and the coupling
of the Maxwell field to the metric is suppressed. This limit
is analogous to the infinite charge limit considered in the
holographic description of superconductivity [2].

A. The large � limit

To keep ~A finite, we have to scale the background gauge
field as well. This means that the chemical potential � of
the black hole should also be scaled in such a way that the
combination �� remains finite. Let us examine what this
limit means to the black hole solution. The Reissner-
Nordström solution has the metric

FIG. 2 (color online). The amplitude h and the energy density
H as a function of k.
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ds2 ¼ �HðrÞdt2 þ 1

HðrÞdr
2 þ r2d~x2;

~x ¼ ðx2; x3; x4Þ;
(3.3)

where the function HðrÞ is given by

HðrÞ ¼ r2
�
1�

�
rþ
r

�
4
�
: (3.4)

The temperature in this limit of � ! 0 becomes

T ¼ rþ
2�

�
2� �2

3r2þ

�
! rþ

�
: (3.5)

The background geometry in this limit is simply the
(neutral) Schwarzschild AdS5 solution. In terms of the

rescaled finite gauge field ~A, the background field strength
is given by

~F¼ ~E

r3
dt^dr; where ~E¼�2��r2þ¼�2r3þ

�

1

�
; (3.6)

where we introduce a new variable � ¼ rþ=��� for later
convenience. Since � ¼ T=��, it can be thought of as a
rescaled temperature.

It is important to note that we have access to the phase
transition point in this limit. In [1], we studied the insta-
bility of the Reissner-Nordström solution and obtained the
critical temperature Tc for the instability as a function
of the Chern-Simons coupling �. The result of our numeri-
cal analysis is reproduced in Fig. 3. For large �, the

dimensionless combination Tc=� grows linearly in �.
Thus, we can analyze the behavior of the system near T ¼
Tc by taking the limit of � ! 1 while keeping the combi-
nation �� finite.
Let us find a nonlinear solution to the equations of

motion that describes the spatially modulated phase in
this limit. We look for a solution that has the same sym-
metry as that of the unstable modes found in [1], namely, a
linear combination of a translation along x2 and a rotation
in the 3-4 plane, as well as the translation symmetries along
t, x3, and x4. This leads to the following ansatz,

~A0 ¼ fðrÞ; ~A1 ¼ g1ðrÞ;
~A2 ¼ g2ðrÞ; ~A :¼ ~A3 þ i ~A4 ¼ hðrÞe�ikx2 :

(3.7)

Note that g1ðrÞ can be set to vanish by a gauge choice, and
g2ðrÞ has to vanish by the Maxwell equation �S

� ~A2
¼ 0. The

nontrivial equations of motion are

�@rðr3f0ðrÞÞ � 4khðrÞh0ðrÞ ¼ 0;

@rðHðrÞrh0ðrÞÞ � 1

r
k2hðrÞ þ 4khðrÞf0ðrÞ ¼ 0:

(3.8)

The first equation can be integrated and becomes

r3f0ðrÞ þ 2khðrÞ2 ¼ ~E: (3.9)

Eliminating f0ðrÞ in the second equation by using the above
relation, we obtain

@rðHðrÞrh0ðrÞÞ � 1

r
k2hðrÞ þ 4k

hðrÞ
r3

ð ~E� 2khðrÞ2Þ ¼ 0:

(3.10)

B. Second order phase transition

We have solved the differential Eq. (3.10) numerically.
For each initial condition at the horizon, the equation is
integrated numerically toward the AdS5 boundary. In gen-
eral, we find a linear combination of normalizable and non-
normalizable modes near the boundary. Since the new
phase of the system should be represented by a normal-
izable solution, we tune the initial condition at the horizon
so that the non-normalizable component vanishes. Figure 4
describes numerical solutions for � ¼ 0:35. The left graph

FIG. 3 (color online). Critical temperature as a function of the
Chern-Simons coupling �. The shaded region indicates a phase
with a nonzero expectation value of the conserved current ~J
which is helical and position dependent.

FIG. 4 (color online). The amplitude h0 and the energy density difference � ~H from the homogeneous phase as functions of k.
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shows the amplitude hðrþÞ ¼ h0 at the horizon as a func-
tion of the momentum k.

Since there is a family of solutions parametrized by the
momentum k, we need to choose the minimum energy
density solution as the final state. The energy density is
given as a sum of the electric and magnetic energy

H ¼ 1

2�2

Z
dr

�
f0ðrÞ2 þ k2

r4
hðrÞ2 þHðrÞ

r2
h0ðrÞ2

�
:

(3.11)

It is convenient to rescale the energy density as ~H ¼
�2r4þH , which is finite in the limit of � ! 1. The right
graph of Fig. 4 shows the energy density as a function of k.
Choosing the momentum corresponding to the minimum
of the energy density, the expectation value of the order
parameter jhJ3 þ iJ4ij can be read off from the asymptotic
behavior of the corresponding bulk field hðrÞ. Figure 5
shows the expectation value jhJ3 þ iJ4ij as a function of
the rescaled temperature �. Near the critical temperature, it
behaves as

jhJ3 þ iJ4ij ¼ A

�
1� �

�c

�
1=2

; (3.12)

where A ¼ 2:04 and �c ¼ 0:37. The critical exponent 1=2
is typical for a mean field theory. Indeed, this can be
expected from the absence of quadratic terms in the equa-
tions of motion (3.10) and the fact that we consider the
gravity system classically. The mean field behavior is also
observed in the holographic description of superconduc-
tivity [2,4].

IV. QUANTUM CORRECTIONS

We found that the phase transition is of the second order
in the classical supergravity approximation. In this section,
we provide evidence that quantum corrections in the bulk
change it to the first order. Such a phenomenon has been
observed by Brazovskii [5] and elaborated by Swift and

Hohenberg in [6], in the context of a classical statistical
model at finite temperature. We will extend this result to
the gravity theory in AdS5.
Let us review the Brazovskii model. It is a classical field

theory in d space dimensions at finite temperature with the
following scalar field Hamiltonian in the momentum rep-
resentation,

F ¼ 1

2

Z ddq

ð2�Þd �ð ~qÞ�ð� ~qÞ½m2 þ ðj ~qj � q0Þ2�

þ �

4!

Z ddq1
ð2�Þd

ddq2
ð2�Þd

ddq3
ð2�Þd �ð ~q1Þ�ð ~q2Þ

��ð ~q3Þ�ð� ~q1 � ~q2 � ~q3Þ: (4.1)

Note the unconventional dispersion relation ! ¼
m2 þ ðj ~qj � q0Þ2. It has the Van Hove singularity
d!=dq ¼ 0 at j ~qj ¼ q0, which will play an important
role in the following.
In the mean field approximation, the system undergoes a

phase transition at m2 ¼ 0, and there is a spatially modu-
lated phase for m2 < 0. The phase is characterized by the
position dependent expectation value of �ð ~xÞ,

h�ð ~xÞi ¼ 2a cos ~q � ~x; (4.2)

with j ~qj ¼ q0. The phase transition is of the second order
in this approximation.
Let us examine if this picture is modified by thermal

fluctuations. The inverse susceptibility is defined by

M2 :¼ G�1ðj ~qj ¼ q0Þ ¼ m2 � �ðj ~qj ¼ q0Þ; (4.3)

where � represents thermal loop contributions. In the
Hartree approximation,

M2 ¼ m2 þ s�

M
þ �a2; (4.4)

where s ¼ �Sdq
d�1
0 =ð2�Þd with Sd the area of the (d� 1)

sphere. There are higher order corrections, but they will not
affect the behavior of M2 near a ¼ 0. The first term in the
right-hand side of (4.4) is the tree level value. The second
term comes from a loop diagram as in Fig. 6, which gives a
contribution near q ¼ q0 of the form

�

ð2�Þd
Z dd ~q

M2 þ ðj ~qj � q0Þ2

� �

ð2�Þd Sdq
d�1
0

Z 1

0

dq

M2 þ ðq� q0Þ2

¼ �

ð2�Þd
�Sdq

d�1
0

M
: (4.5)

There are subleading terms for small M, but what is
relevant for the analysis below is the 1=M pole from the
loop. The third term �a2 comes from the quartic coupling
combined with the expectation value (4.2) of �.

FIG. 5 (color online). The expectation value of the order
parameter as a function of the temperature. The dotted curve
is the numerical result and the solid curve is its fit with
ð1� �=�cÞ1=2.
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The free energy F for the expectation value (4.2) can be
evaluated by setting [5]

dF
da

¼ 2M2a� �a3: (4.6)

Combining this with

da

dM
¼ M

�a

�
1þ s�

2M3

�
; (4.7)

derived from (4.4), we find

F ¼
Z dF

da
da ¼

Z dF
da

da

dM
dM

¼ 1

2�

�
M4

2
þm2M2 þ 3s�M� s�m2

M
� s2�2

2M2

�
: (4.8)

Note that the terms in the parentheses in (4.8) depend on
s and � only in the combination s�. If we rescale m andM
by a factor of � and s� by �3, the terms in the parentheses
in (4.8) scale like �4. Thus, we can set s ¼ � ¼ 1 without

loss of generality if we do not care about an overall factor
ofF . Figure 7 illustrates the free energyF as a function of
m2. For m2 � 0, we have a graph with only a minimum at

the origin. As m2 decreases and crosses �2�ð2=3Þ3�
�1:89, we see two inflection points away from the origin,
representing the spatially modulated phase. At this point,
the homogeneous phase at a ¼ 0 still has a lower energy.
As we lower m2 further, the energy of the spatially modu-
lated phase becomes lower than that of the homogeneous
phase, and the first order phase transition occurs.
The crucial point is that the origin a ¼ 0 remains semi-

stable throughout the process since d2F =da2 ¼ 2M2 > 0
at a ¼ 0. This in turn is due to the fact that (4.4) has
a solution with M2 > 0 for any value of m2 including
m2 < 0. This is possible since the second term in the
equation is proportional to 1=M and diverges as M ! 0.
This is illustrated in Fig. 8. Since a ¼ 0 is always semi-
stable, the phase transition cannot be of the second order.
The 1=M singularity in (4.4) originates from the fact

that the kinetic operator ½M2 þ ðj ~qj � q0Þ2� vanishes at
M2 ¼ 0 and j ~qj ¼ q0. If the zero of the kinetic operator
were at ~q ¼ 0, it would not have caused the 1=M singu-
larity because the factor qd�1 in the phase space volume
qd�1dq would have suppressed it. The singularity is gen-
erated in our case because of the larger phase space volume
�qd�1

0 dq at j ~qj ¼ q0 in (4.5). It ensures that there is a

positiveM2 solution to (4.4) and that the origin of the field
space is metastable.
This feature is shared by the gravity theory considered in

this paper. In our classical analysis in the last section, we
found that the phase transition happens at T ¼ Tc and the
new phase for T < Tc is represented by the nonlinear static

FIG. 6. A loop diagram that contributes to the two-point cor-
relation function.

FIG. 7 (color online). Different shapes of the graphs of the free energy F as a function of a as the parameter m2 changes.
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solutions constructed in Sec. III. Since the phase transition
is of the second order, the size of the nonlinear solution
grows linearly in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc � T

p
. This means that, at T ¼ Tc,

there are static solutions to the linearized equations of
motion, namely, a zero of the kinetic operator at nonzero
momenta. As in the case of the Brazovskii model, it gen-
erates a 1=M singularity in the two-point function. Thus,
we expect that the homogeneous phase will remain meta-
stable for T < Tc. If quantum corrections are parametri-
cally suppressed (e.g., by 1=N), the spatially modulated
phase will eventually acquire lower energy and the first
order phase transition will take place at that point.

V. LINEAR RESPONSE

Finally, let us examine linear response of our solution
when we couple a gauge field to the current J at the
boundary. Because of the Chern-Simons term, the current
is anomalous. We therefore treat the boundary gauge field
as an external and nondynamical source as in recent pa-
pers, for example, [7,8].

Note that the background solution we consider is inho-
mogeneous, carrying the momentum k. In the homogene-
ous setup, it is natural to choose a translationally invariant
source. In our case, we consider a small perturbation of the

form ~A ¼ ~Að0Þ þ a, where ~Að0Þ is our nonlinear solution
and a is a small perturbation with nonzero components,

a3ðx2; r; tÞ þ ia4ðx2; r; tÞ ¼ �iaTðr; tÞe�ikx2 ;

a2ðr; tÞ ¼ aLðr; tÞ:
(5.1)

Here, aTðr; tÞ and aLðr; tÞ are real functions of r and t.
Notice that we turn on a magnetic field as well as an
electric field. It is not possible to turn on only an electric
field due to the Bianchi identity @½þFt2� ¼ 0, where þ
denotes the coordinate x3 þ ix4. However, in the current
setup, the magnetic field is determined by the electric field
and is not an independent quantity.

The nontrivial linear equations of motion of the fields
aTðr; tÞ and aLðr; tÞ are

� r

HðrÞ @
2
t aL þ @rðrHðrÞ@raLÞ þ 4@rhðrÞ@taT ¼ 0;

� r

HðrÞ @
2
t aT þ @rðrHðrÞ@raTÞ � k2

r
aT

þ 4k
~E� 2�khðrÞ2

r3
aT � 4@rhðrÞ@taL ¼ 0: (5.2)

Here hðrÞ is the nonlinear solution we have found previ-
ously. We are interested in modes with definite frequency
of the form e�i!t. The fields aTðrÞ and aLðrÞ behave as

HðrÞ�ði!=4Þ near the horizon r ¼ rþ if we impose the
ingoing boundary condition. On the other hand, near the
AdS5 boundary r ¼ 1, they behave as

aT ¼ aTð0Þ þ aTð2Þr�2 þ aTðlogÞr�2 logr=rþ þ � � � ;
aL ¼ aLð0Þ þ aLð2Þr�2 þ aLðlogÞr�2 logr=rþ þ � � � : (5.3)

Note that there are logarithmic terms and that the coeffi-
cient aTð2Þ or aLð2Þ can be shifted by aTðlogÞ and aLðlogÞ if we
change the scale of the radial coordinate r. This corre-
sponds to the choice of a renormalization scale, and should
not affect physical quantities. The behavior of Eqs. (5.2)
near theAdS5 boundary r ¼ 1 fixes aTðlogÞ and aLðlogÞ to be

aTðlogÞ ¼ 1

2
ð!2 � k2ÞaTð0Þ; aLðlogÞ ¼ !2

2
aLð0Þ: (5.4)

Since we are solving a set of linear differential equations,
the coefficients aTð2Þ and aLð2Þ are determined linearly from

aTð0Þ and aLð0Þ. That is,

aTð2Þ
aLð2Þ

� �
¼ �

aTð0Þ
aLð0Þ

� �
; (5.5)

for some 2� 2 complex matrix �. From the prescription
in [9], and analogously to [10], the retarded Green’s func-
tions for fields aT and aL are given by

GR ¼ 2�þ
ð!2 � k2Þ

�
log r

rþ
� 1

2

�
0

0 !2

�
log r

rþ
� 1

2

�
0
BB@

1
CCA;

(5.6)

where the last term is due to the logarithmically divergent
terms in (5.3) whose coefficients are given in (5.4). These
divergent parts can be removed by adding a suitable bound-
ary counterterm to the gravity action. After subtracting the
divergence, we arrive at

GR ¼ 2��
1
2 ð!2 � k2Þ 0

0 1
2!

2

 !
: (5.7)

When considering modes of definite frequency, the addi-
tional electric fields ET and EL are i!aTð0Þ and i!aLð0Þ,
respectively. Therefore the conductivity is given by

FIG. 8 (color online). The relation between m2 and M2. Note
that for any value of m2, there is always a solution with M2 > 0.

HOLOGRAPHIC ENDPOINT OF SPATIALLY MODULATED . . . PHYSICAL REVIEW D 82, 126001 (2010)

126001-7



	 ¼ 1

i!
GR ¼ 2

i!
�þ

i
2! ð!2 � k2Þ 0

0 i!
2

 !
: (5.8)

Let us evaluate the conductivity 	 numerically for the
Chern-Simons coupling � ¼ 0:59. For this value of �, the
minimum energy occurs at the momentum k ¼ �2:37rþ.
We denote the components of the retarded Green’s function
and the conductivity, respectively, as

GR ¼ GTT GTL

GLT GLL

� �
; (5.9)

and

	 ¼ 	TT 	TL

	LT 	LL

� �
: (5.10)

This numerical result has several interesting features.
The imaginary part of the retarded Green’s function GTT

for a pair of aT fields behaves like 1=! near ! ¼ 0, as
shown in Fig. 9. The pole at! ¼ 0 is directly related to the
fact that aT is a Goldstone mode. This can be seen as
follows. As ! goes to 0, the solution becomes static and
we can ignore the terms with time derivatives in (5.2).

In this limit, the equation of motion for aT reduces to the
linearized version of the equation for the phase rotation of
the inhomogeneous background solution (3.7). Especially,
aT goes to hðrÞ as we take a static limit. Since hðrÞ is a
solution that does not have a non-normalizable mode, if we
start with a source such that aTð0Þ ¼ 0, (5.5) implies that

�TT should diverge in the static limit. Therefore, we ex-
pect to see a pole at ! ¼ 0 in GR

TT .
Figure 10 shows the off-diagonal components of the

conductivity Im	TL and Im	LT . Note that they behave as
1=! with opposite coefficients. The antisymmetry of 	TL

and	LT is due to the fact that (5.2) remains invariant under
the change t ! �t if we simultaneously change the sign of
aTðrÞ. The poles at ! ¼ 0 in the imaginary part of the
conductivity indicate that there are delta function contri-
butions at ! ¼ 0 to Re	TL and Re	LT , which implies that
there is an off-diagonal infinite DC conductivity.
It is also instructive to diagonalize the conductivity

matrix. Figure 11 shows the real parts of the two diagonal
components of the diagonalized conductivity matrix.
The real part of a conductivity is directly related to the
spectral density, and the real parts of the two eigenvalues
measure the spectral densities corresponding to two linear

FIG. 9 (color online). The real and the imaginary parts of GR
TT .

FIG. 10 (color online). The real and the imaginary parts of 	TL and 	LT .
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combinations of the transverse and longitudinal currents
associated with aT and aL fields. In particular it should
always be positive, and indeed this is shown explicitly in
Fig. 11. One of the diagonal conductivities has a 1=!2

pole, which is again related to the presence of a Goldstone
mode.
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Note added.—After the first version of this paper was
completed, we were informed of the work [3], which
suggested that an instability to crystalline phases might
be a generic feature of phases which are describable by a
bulk AdS2 geometry. Such an instability would provide a
natural way to understand the ground state entropy.

APPENDIX: ANALYSIS IN THE AdS2 � R3

GEOMETRY

In this Appendix, we consider the Maxwell field in the
AdS2 � R3 geometry, ignoring its backreaction to the met-
ric. Since the geometry corresponds to the zero tempera-
ture limit of the black hole, it does not appear in the limit
we consider in Sec. III. On the other hand, the equations of
motion can be solved analytically in this case, and it gives a
natural generalization of the analysis in Sec. II.

The metric of AdS2 � R3 is given by

ds2 ¼ �r2dt2 þ dr2

r2
þ dx22 þ dx23 þ dx24: (A1)

Note that, especially,
ffiffiffiffiffiffiffi�g

p ¼ 1. We assume the radius of

curvature for AdS2 is 1. A different value of the radius can
be easily considered by using dimensional analysis. For a
generic metric, the Lagrangian is given by

L ¼ � 1

4
FIJF

IJ þ �

3!
ffiffiffiffiffiffiffi�g

p �IJKLMAIFJKFLM; (A2)

whose equation of motion is

@Jð ffiffiffiffiffiffiffi�g
p

FJIÞ þ �

2
�IJKLMFJKFLM ¼ 0: (A3)

The index is such that t ¼ 0 and r ¼ 1. Here
ffiffiffiffiffiffiffi�g

p ¼ 1.
Let us find out a class of nonlinear static solutions with

the ansatz

A0 ¼ fðrÞ; A1 ¼ A2 ¼ 0;

A :¼ A3 þ iA4 ¼ hðrÞe�ikx2 :
(A4)

The equations of motion can be written as

�f00ðrÞ � 4�khðrÞh0ðrÞ ¼ 0;

@rðr2h0ðrÞÞ � k2hðrÞ þ 4�khðrÞf0ðrÞ ¼ 0:
(A5)

Integrating the first equation, we obtain

f0ðrÞ þ 2�khðrÞ2 ¼ E; (A6)

where E is the constant electric background field since the
left-hand side is just the first component of the conjugate
momentum �1. Solving for f0ðrÞ and plugging into (A5),

@rðr2h0ðrÞÞ � k2hðrÞ þ 4�khðrÞðE� 2�khðrÞ2Þ ¼ 0:

(A7)

For u ¼ logr, the equation becomes

h00ðuÞ þ h0ðuÞ � k2hðuÞ þ 4�khðuÞðE� 2�khðuÞ2Þ ¼ 0:

(A8)

If we treat u as a time coordinate, this equation describes a
one-dimensional motion of a particle parametrized by h
subject to a frictional force and under the potential

U ¼ 1
2kð4�E� kÞh2 � 2�2k2h4: (A9)

If 0< k< 4�E, the potential is an upside-down Mexican
hat. If a particle starts at one of the two hills at u ¼ �1, it
will oscillate around h ¼ 0, as in the case of the
Minkowski space discussed in Sec. II. The new feature in
the AdS2 case is that there is a friction term in (A8) and the
motion will eventually stop at h ¼ 0.
In order for a nonlinear solution to exist, the momentum

k must obey the additional condition, kðk� 4�EÞ>� 1
4 ,

which is equivalent to the Breitenlohner-Freedman bound.
This condition is needed since any nonlinear solution h

FIG. 11 (color online). The real parts of the diagonal compo-
nents of the diagonalized conductivity matrix.
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tends to h ¼ 0 for large u ¼ logr and obeys the linearized
equation near the boundary of AdS2. This, in particular,
means that there is no nonlinear solution with k ¼ 0.

Unlike the case of the Minkowski space, the endpoint of
the instability is not a trivial vacuum but a nontrivial
solution carrying a nonzero momentum.
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