380 research outputs found

    GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment

    Get PDF
    The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are key components of microenvironment driving tumor progression. GPER is a transcriptional target of hypoxia inducible factor 1 alpha (HIF-1α) and activates VEGF expression and angiogenesis in hypoxic breast tumor microenvironment. Furthermore, IGF1/IGF1R signaling, which has angiogenic effects, has been shown to activate GPER in breast cancer cells. We analyzed gene expression data from published studies representing almost 5000 breast cancer patients to investigate whether GPER and IGF1 signaling establish an angiocrine gene signature in breast cancer patients. Next, we used GPER-positive but estrogen receptor (ER)-negative primary CAF cells derived from patient breast tumours and SKBR3 breast cancer cells to investigate the role of GPER in the regulation of VEGF expression and angiogenesis triggered by IGF1. We performed gene expression and promoter studies, western blotting and immunofluorescence analysis, gene silencing strategies and endothelial tube formation assays to evaluate the involvement of the HIF-1α/GPER/VEGF signaling in the biological responses to IGF1. We first determined that GPER is co-expressed with IGF1R and with the vessel marker CD34 in human breast tumors (n = 4972). Next, we determined that IGF1/IGF1R signaling engages the ERK1/2 and AKT transduction pathways to induce the expression of HIF-1α and its targets GPER and VEGF. We found that a functional cooperation between HIF-1α and GPER is essential for the transcriptional activation of VEGF induced by IGF1. Finally, using conditioned medium from CAFs and SKBR3 cells stimulated with IGF1, we established that HIF-1α and GPER are both required for VEGF-induced human vascular endothelial cell tube formation. These findings shed new light on the essential role played by GPER in IGF1/IGF1R signaling that induces breast tumor angiogenesis. Targeting the multifaceted interactions between cancer cells and tumor microenvironment involving both GPCRs and growth factor receptors has potential in future combination anticancer therapies

    Mucin Dynamics in Intestinal Bacterial Infection

    Get PDF
    Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract.Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17) in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05). Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon.Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection

    Effect of sucralfate on components of mucosal barrier produced by cultured canine epithelial cells in vitro

    Full text link
    The mucous gel maintains a neutral microclimate at the epithelial cell surface, which may play a role in both the prevention of gastroduodenal injury and the provision of an environment essential for epithelial restitution and regeneration after injury. Enhancement of the components of the mucous barrier by sucralfate may explain its therapeutic efficacy for upper gastrointestinal tract protection, repai, and healing. We studied the effect of sucralfate and its major soluble component, sucrose octasulfate (SOS), on the synthesis and release of gastric mucin and surface active phospholipid, utilizing an isolated canine gastric mucous cells in culture. We correlated these results with the effect of the agents on mucin synthesis and secretion utilizing explants of canine fundus in vitro . Sucralfate and SOS significantly stimulated phospholipid secretion by isolated canine mucous cells in culture (123% and 112% of control, respectively.) Indomethacin pretreatment siginificantly inhibited the effect of sucralfate, but not SOS, on the stimulation of phospholipid release. Administration of either sucralfate or SOS to the isolated canine mucous cells had no effect upon mucin synthesis or secretion using a sensitive immunoassay. Sucralfate and SOS did not stimulate mucin release in the canine explants; sucralfate significantly stimulated the synthesis of mucin, but only to 108% of that observed in untreated explants. No increase in PGE 2 release was observed after sucralfate or SOS exposure to the isolated canine mucous cells. Our results suggest sucralfate affects the mucus barrier largely in a qualitative manner. No increase in mucin secretion or major effect on synthesis was notd, although a significant increase in surface active phospholipid release was observed. The lack of dose dependency of this effect, along with the results of the PGE 2 assay, suggests the drug may act through a non-receptor-mediated mechanism to perturb the cell membrane and release surface active phospholipid. The enhancement of phospholipid release by sucralfate to augment the barrier function of gastric mucus may, in concert with other effects of the drug, strrengthen mucosal barrier function.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44415/1/10620_2005_Article_BF01308079.pd

    Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer

    Get PDF
    BACKGROUND. Monocarboxylate transporters (MCTs) are transmembrane proteins involved in the transport of monocarboxylates across the plasma membrane, which appear to play an important role in solid tumours, however the role of MCTs in prostate cancer is largely unknown.The aim of the present work was to evaluate the clinico-pathological value of monocarboxylate transporters (MCTs) expression, namely MCT1, MCT2 and MCT4, together with CD147 and gp70 as MCT1/4 and MCT2 chaperones, respectively, in prostate carcinoma. METHODS. Prostate tissues were obtained from 171 patients, who performed radical prostatectomy and 14 patients who performed cystoprostatectomy. Samples and clinico-pathological data were retrieved and organized into tissue microarray (TMAs) blocks. Protein expression was evaluated by immunohistochemistry in neoplastic (n= 171), adjacent non-neoplastic tissues (n= 135), PIN lesions (n=40) and normal prostatic tissue (n=14). Protein expression was correlated with patients' clinicopathologic characteristics. RESULTS. In the present study, a significant increase of MCT2 and MCT4 expression in the cytoplasm of tumour cells and a significant decrease in both MCT1 and CD147 expression in prostate tumour cells was observed when compared to normal tissue. All MCT isoforms and CD147 were expressed in PIN lesions. Importantly, for MCT2 and MCT4 the expression levels in PIN lesions were between normal and tumour tissue, which might indicate a role for these MCTs in the malignant transformation. Associations were found between MCT1, MCT4 and CD147 expressions and poor prognosis markers; importantly MCT4 and CD147 overexpression correlated with higher PSA levels, Gleason score and pT stage, as well as with perineural invasion and biochemical recurrence. CONCLUSIONS. Our data provides novel evidence for the involvement of MCTs in prostate cancer. According to our results, we consider that MCT2 should be further explored as tumour marker and both MCT4 and CD147 as markers of poor prognosis in prostate cancer.NPG, CP and VMG received fellowships from the Portuguese Foundation for Science and Technology (FCT), refs. SFRH/BD/61027/2009, SFRH/BPD/69479/ 2010 and SFRH/BI/33503/2008, respectively. This work was supported by the FCT grant ref. PTDC/SAU-FCF/104347/2008, under the scope of Programa Operacional Temático Factores de Competitividade” (COMPETE) of Quadro Comunitário de Apoio III and co-financed by Fundo Comunitário Europeu FEDER

    Altering Mucus Rheology to “Solidify” Human Mucus at the Nanoscale

    Get PDF
    The ability of mucus to function as a protective barrier at mucosal surfaces rests on its viscous and elastic properties, which are not well understood at length scales relevant to pathogens and ultrafine environmental particles. Here we report that fresh, undiluted human cervicovaginal mucus (CVM) transitions from an impermeable elastic barrier to non-adhesive objects sized 1 µm and larger to a highly permeable viscoelastic liquid to non-adhesive objects smaller than 500 nm in diameter. Addition of a nonionic detergent, present in vaginal gels, lubricants and condoms, caused CVM to behave as an impermeable elastic barrier to 200 and 500 nm particles, suggesting that the dissociation of hydrophobically-bundled mucin fibers created a finer elastic mucin mesh. Surprisingly, the macroscopic viscoelasticity, which is critical to proper mucus function, was unchanged. These findings provide important insight into the nanoscale structural and barrier properties of mucus, and how the penetration of foreign particles across mucus might be inhibited

    CCAAT/Enhancer Binding Protein alpha uses distinct domains to prolong pituitary cells in the Growth 1 and DNA Synthesis phases of the cell cycle

    Get PDF
    BACKGROUND: A number of transcription factors coordinate differentiation by simultaneously regulating gene expression and cell proliferation. CCAAT/enhancer binding protein alpha (C/EBPα) is a basic/leucine zipper transcription factor that integrates transcription with proliferation to regulate the differentiation of tissues involved in energy balance. In the pituitary, C/EBPα regulates the transcription of a key metabolic regulator, growth hormone. RESULTS: We examined the consequences of C/EBPα expression on proliferation of the transformed, mouse GHFT1-5 pituitary progenitor cell line. In contrast to mature pituitary cells, GHFT1-5 cells do not contain C/EBPα. Ectopic expression of C/EBPα in the progenitor cells resulted in prolongation of both growth 1 (G1) and the DNA synthesis (S) phases of the cell cycle. Transcription activation domain 1 and 2 of C/EBPα were required for prolongation of G1, but not of S. Some transcriptionally inactive derivatives of C/EBPα remained competent for G1 and S phase prolongation. C/EBPα deleted of its leucine zipper dimerization functions was as effective as full-length C/EBPα in prolonging G1 and S. CONCLUSION: We found that C/EBPα utilizes mechanistically distinct activities to prolong the cell cycle in G1 and S in pituitary progenitor cells. G1 and S phase prolongation did not require that C/EBPα remained transcriptionally active or retained the ability to dimerize via the leucine zipper. G1, but not S, arrest required a domain overlapping with C/EBPα transcription activation functions 1 and 2. Separation of mechanisms governing proliferation and transcription permits C/EBPα to regulate gene expression independently of its effects on proliferation

    Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions

    Get PDF
    Over 90% of all cancers are carcinomas, malignancies derived from cells of epithelial origin. As carcinomas progress, these tumors may lose epithelial morphology and acquire mesenchymal characteristics which contribute to metastatic potential. An epithelial-to-mesenchymal transition (EMT) similar to the process critical for embryonic development is thought to be an important mechanism for promoting cancer invasion and metastasis. Epithelial-to-mesenchymal transitions have been induced in vitro by transient or unregulated activation of receptor tyrosine kinase signaling pathways, oncogene signaling and disruption of homotypic cell adhesion. These cellular models attempt to mimic the complexity of human carcinomas which respond to autocrine and paracrine signals from both the tumor and its microenvironment. Activation of the epidermal growth factor receptor (EGFR) has been implicated in the neoplastic transformation of solid tumors and overexpression of EGFR has been shown to correlate with poor survival. Notably, epithelial tumor cells have been shown to be significantly more sensitive to EGFR inhibitors than tumor cells which have undergone an EMT-like transition and acquired mesenchymal characteristics, including non-small cell lung (NSCLC), head and neck (HN), bladder, colorectal, pancreas and breast carcinomas. EGFR blockade has also been shown to inhibit cellular migration, suggesting a role for EGFR inhibitors in the control of metastasis. The interaction between EGFR and the multiple signaling nodes which regulate EMT suggest that the combination of an EGFR inhibitor and other molecular targeted agents may offer a novel approach to controlling metastasis

    Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression

    Get PDF
    Background: The aim of this study is to seek an association between markers of metastatic potential, drug resistance-related protein and monocarboxylate transporters in prostate cancer (CaP). Methods: We evaluated the expression of invasive markers (CD147, CD44v3-10), drug-resistance protein (MDR1) and monocarboxylate transporters (MCT1 and MCT4) in CaP metastatic cell lines and CaP tissue microarrays (n=140) by immunostaining. The co-expression of CD147 and CD44v3-10 with that of MDR1, MCT1 and MCT4 in CaP cell lines was evaluated using confocal microscopy. The relationship between the expression of CD147 and CD44v3-10 and the sensitivity (IC50) to docetaxel in CaP cell lines was assessed using MTT assay. The relationship between expression of CD44v3-10, MDR1 and MCT4 and various clinicopathological CaP progression parameters was examined. Results: CD147 and CD44v3-10 were co-expressed with MDR1, MCT1 and MCT4 in primary and metastatic CaP cells. Both CD147 and CD44v3-10 expression levels were inversely related to docetaxel sensitivity (IC50) in metastatic CaP cell lines. Overexpression of CD44v3-10, MDR1 and MCT4 was found in most primary CaP tissues, and was significantly associated with CaP progression. Conclusions: Our results suggest that the overexpression of CD147, CD44v3-10, MDR1 and MCT4 is associated with CaP progression. Expression of both CD147 and CD44v3-10 is correlated with drug resistance during CaP metastasis and could be a useful potential therapeutic target in advanced disease
    corecore