294 research outputs found

    Non-Gaussianities in Multifield Inflation: Superhorizon Evolution, Adiabaticity, and the Fate of fnl

    Full text link
    We explore the superhorizon generation of large fnl of the local form in two field inflation. We calculate the two- and three-point observables in a general class of potentials which allow for an analytic treatment using the delta N formalism. Motivated by the conservation of the curvature perturbation outside the horizon in the adiabatic mode and also by the observed adiabaticity of the power spectrum, we follow the evolution of fnl^{local} until it is driven into the adibatic solution by passing through a phase of effectively single field inflation. We find that although large fnl^{local} may be generated during inflation, such non-gaussianities are transitory and will be exponentially damped as the cosmological fluctuations approach adiabaticity.Comment: v3: Typos corrected, minor changes to match published version, references added, 18 pages, 1 figure. v2: Changed sign of fnl to match WMAP convention, minor changes throughout, references added, 18 pages, 1 figure. v1: 17 pages, 1 figur

    Machine Learning Classification of SDSS Transient Survey Images

    Full text link
    We show that multiple machine learning algorithms can match human performance in classifying transient imaging data from the Sloan Digital Sky Survey (SDSS) supernova survey into real objects and artefacts. This is a first step in any transient science pipeline and is currently still done by humans, but future surveys such as the Large Synoptic Survey Telescope (LSST) will necessitate fully machine-enabled solutions. Using features trained from eigenimage analysis (principal component analysis, PCA) of single-epoch g, r and i-difference images, we can reach a completeness (recall) of 96 per cent, while only incorrectly classifying at most 18 per cent of artefacts as real objects, corresponding to a precision (purity) of 84 per cent. In general, random forests performed best, followed by the k-nearest neighbour and the SkyNet artificial neural net algorithms, compared to other methods such as na\"ive Bayes and kernel support vector machine. Our results show that PCA-based machine learning can match human success levels and can naturally be extended by including multiple epochs of data, transient colours and host galaxy information which should allow for significant further improvements, especially at low signal-to-noise.Comment: 14 pages, 8 figures. In this version extremely minor adjustments to the paper were made - e.g. Figure 5 is now easier to view in greyscal

    First On-Sky High Contrast Imaging with an Apodizing Phase Plate

    Get PDF
    We present the first astronomical observations obtained with an Apodizing Phase Plate (APP). The plate is designed to suppress the stellar diffraction pattern by 5 magnitudes from 2-9 lambda/D over a 180 degree region. Stellar images were obtained in the M' band (4.85 microns) at the MMTO 6.5m telescope, with adaptive wavefront correction made with a deformable secondary mirror designed for low thermal background observations. The measured PSF shows a halo intensity of 0.1% of the stellar peak at 2 lambda/D (0.36 arcsec), tapering off as r^{-5/3} out to radius 9 lambda/D. Such a profile is consistent with residual errors predicted for servo lag in the AO system. We project a 5 sigma contrast limit, set by residual atmospheric fluctuations, of 10.2 magnitudes at 0.36 arcsec separation for a one hour exposure. This can be realised if static and quasi-static aberrations are removed by differential imaging, and is close to the sensitivity level set by thermal background photon noise for target stars with M'>3. The advantage of using the phase plate is the removal of speckle noise caused by the residuals in the diffraction pattern that remain after PSF subtraction. The APP gives higher sensitivity over the range 2-5 lambda/D compared to direct imaging techniques.Comment: 22 pages, 5 figures, 1 table, ApJ accepte

    Axion Inflation and Gravity Waves in String Theory

    Full text link
    The majority of models of inflation in string theory predict an absence of measurable gravitational waves, r << 10^{-3}. The most promising proposals for making string theoretic models that yield measurable tensor fluctuations involve axion fields with slightly broken shift symmetry. We consider such models in detail, with a particular focus on the N-flation scenario and on axion valley/natural inflation models. We find that in Calabi-Yau threefold compactifications with logarithmic Kahler potentials K it appears to be difficult to meet the conditions required for axion inflation in the supergravity regime. However, in supergravities with an (approximately) quadratic shift-symmetric K, axion inflation may be viable. Such Kahler potentials do arise in some string models, in specific limits of the moduli space. We describe the most promising classes of models; more detailed study will be required before one can conclude that working models exist.Comment: 30 + 16 pages, 5 figures. Added references, corrected typo

    Features of deSitter Vacua in M-Theory

    Full text link
    We compute the masses of all moduli in the unstable deSitter vacua arising in the toy model of cosmological M-theory flux compactifications on the G2 holonomy manifolds of [1]. The slow-roll parameters in the tachyonic directions are shown to be too large to be useful for conventional models of inflation. However, it appears that we can find fast roll regimes which could, under certain conditions, account for the current dark energy driven accelerated expansion of the universe.Comment: 14 pages, 1 figur

    Volume Weighted Measures of Eternal Inflation in the Bousso-Polchinski Landscape

    Get PDF
    We consider the cosmological dynamics associated with volume weighted measures of eternal inflation, in the Bousso-Polchinski model of the string theory landscape. We find that this measure predicts that observers are most likely to find themselves in low energy vacua with one flux considerably larger than the rest. Furthermore, it allows for a satisfactory anthropic explanation of the cosmological constant problem by producing a smooth, and approximately constant, distribution of potentially observable values of Lambda. The low energy vacua selected by this measure are often short lived. If we require anthropically acceptable vacua to have a minimum life-time of 10 billion years, then for reasonable parameters a typical observer should expect their vacuum to have a life-time of approximately 12 billion years. This prediction is model dependent, but may point toward a solution to the coincidence problem of cosmology.Comment: 35 pages, 8 figure

    The Non-BPS Black Hole Attractor Equation

    Full text link
    We study the attractor mechanism for extremal non-BPS black holes with an infinite throat near horizon geometry, developing, as we do so, a physical argument as to why such a mechanism does not exist in non-extremal cases. We present a detailed derivation of the non-supersymmetric attractor equation. This equation defines the stabilization of moduli near the black hole horizon: the fixed moduli take values specified by electric and magnetic charges corresponding to the fluxes in a Calabi Yau compactification of string theory. They also define the so-called double-extremal solutions. In some examples, studied previously by Tripathy and Trivedi, we solve the equation and show that the moduli are fixed at values which may also be derived from the critical points of the black hole potential.Comment: 32 Pages, 2 Figures, LaTeX; v2: typos corrected, references adde
    • …
    corecore