We show that multiple machine learning algorithms can match human performance
in classifying transient imaging data from the Sloan Digital Sky Survey (SDSS)
supernova survey into real objects and artefacts. This is a first step in any
transient science pipeline and is currently still done by humans, but future
surveys such as the Large Synoptic Survey Telescope (LSST) will necessitate
fully machine-enabled solutions. Using features trained from eigenimage
analysis (principal component analysis, PCA) of single-epoch g, r and
i-difference images, we can reach a completeness (recall) of 96 per cent, while
only incorrectly classifying at most 18 per cent of artefacts as real objects,
corresponding to a precision (purity) of 84 per cent. In general, random
forests performed best, followed by the k-nearest neighbour and the SkyNet
artificial neural net algorithms, compared to other methods such as na\"ive
Bayes and kernel support vector machine. Our results show that PCA-based
machine learning can match human success levels and can naturally be extended
by including multiple epochs of data, transient colours and host galaxy
information which should allow for significant further improvements, especially
at low signal-to-noise.Comment: 14 pages, 8 figures. In this version extremely minor adjustments to
the paper were made - e.g. Figure 5 is now easier to view in greyscal