658 research outputs found
Exclusion Statistics of Quasiparticles in Condensed States of Composite Fermion Excitations
The exclusion statistics of quasiparticles is found at any level of the
hierarchy of condensed states of composite fermion excitations (for which
experimental indications have recently been found). The hierarchy of condensed
states of excitations in boson Jain states is introduced and the statistics of
quasiparticles is found. The quantum Hall states of charged -anyons
( -- the exclusion statistics parameter) can be described as
incompressible states of -anyons ( -- an even number).Comment: 4 page
Composite Fermions and the Fractional Quantum Hall Effect: Essential Role of the Pseudopotential
The mean field (MF) composite Fermion (CF) picture successfully predicts the
band of low lying angular momentum multiplets of fractional quantum Hall
systems for any value of the magnetic field. This success cannot be attributed
to a cancellation between Coulomb and Chern--Simons interactions between
fluctuations beyond the mean field. It results instead from the short range
behavior of the Coulomb pseudopotential in the lowest Landau level (LL). The
class of pseudopotentials for which the MFCF picture is successful can be
defined, and used to explain the success or failure of the picture in different
cases (e.g. excited LL's, charged magneto-excitons, and Laughlin quasiparticles
in a CF hierarchy picture).Comment: 4 pages, 4 figures (RevTeX+epsf); talk at EP2DS-XII
Thermal Performance of the LHC Connection Cryostat
The 16 connection cryostats for the Large Hadron Collider (LHC) being built at CERN are designed to fill the gap existing between the dispersion suppressor zones and the standard arcs of the accelerator. The first connection cryostat was cold tested down to superfluid helium temperature in August 2005, and the measured thermal performance was as expected. This paper presents the test results and a new thermal modeling of the connection cryostat based on the measurement of the thermal resistances of the braids used for thermalisation, allowing the precise determination of cool down times and equilibrium temperatures of the shielding under various conditions such as lead heating
Role of surface microgeometries on electron escape probability and secondary electron yield of metal surfaces
The influence of microgeometries on the Secondary Electron Yield (SEY) of surfaces is investigated. Laser written structures of different aspect ratio (height to width) on a copper surface tuned the SEY of the surface and reduced its value to less than unity. The aspect ratio of microstructures was methodically controlled by varying the laser parameters. The results obtained corroborate a recent theoretical model of SEY reduction as a function of the aspect ratio of microstructures. Nanostructures - which are formed inside the microstructures during the interaction with the laser beam - provided further reduction in SEY comparable to that obtained in the simulation of structures which were coated with an absorptive layer suppressing secondary electron emission
The Composite Fermion Hierarchy: Condensed States of Composite Fermion Excitations?
A composite Fermion hierarchy theory is constructed in a way related to the
original Haldane picture by applying the composite Fermion (CF) transformation
to quasiparticles of Jain states. It is shown that the Jain theory coincides
with the Haldane hierarchy theory for principal CF fillings. Within the Fermi
liquid approach for few electron systems on the sphere a simple interpretation
of many-quasiparticle spectra is given and provides an explanation of failure
of CF hierarchy picture when applied to the hierarchical state.Comment: 6 pages, Revtex, 4 figures in PostScript, submitted to Phys. Rev.
Let
3 - 14 Micron Spectroscopy of Comets C/2002 O4 (Honig), C/2002 V1 (NEAT), C/2002 X5 (Kudo-Fujikawa), C/2002 Y1 (Juels-Holvorcem), 69P/Taylor, and the Relationships among Grain Temperature, Silicate Band Strength and Structure among Comet Families
We report 3 - 13 micron spectroscopy of 4 comets observed between August 2002
and February 2003: C/2002 O4 (Honig) on August 1, 2002, C/2002 V1 (NEAT) on
Jan. 9 and 10, 2003, C/2002 X5 (Kudo-Fujikawa) on Jan. 9 and 10, 2003, and
C/2002 Y1 (Juels-Holvorcem) on Feb. 20, 2003. In addition, we include data
obtained much earlier on 69P/Taylor (February 9, 1998) but not previously
published. For Comets Taylor, Honig, NEAT, and Kudo-Fujikawa, the silicate
emission band was detected, being approximately 23%, 12%, 15%, and 10%,
respectively, above the continuum. The data for Comet Juels-Holvorcem were of
insufficient quality to detect the presence of a silicate band of comparable
strength to the other three objects, and we place an upper limit of 24% on this
feature. The silicate features in both NEAT and Kudo-Fujikawa contained
structure indicating the presence of crystalline material. Combining these data
with those of other comets, we confirm the correlation between silicate band
strength and grain temperature of Gehrz & Ney (1992) and Williams et al. (1997)
for dynamically new and long period comets, but the majority of Jupiter family
objects may deviate from this relation. The limited data available on Jupiter
family objects suggest that they may have silicate bands that are slightly
different from the former objects. Finally, when compared to the silicate
emission bands observed in pre-main sequence stars, the dynamically new and
long period comets most closely resemble the more evolved stellar systems,
while the limited data (in quantity and quality) on Jupiter family objects seem
to suggest that these have spectra more like the less-evolved stars.Comment: 45 pages, 12 figure
Fractional Quantum Hall States of Clustered Composite Fermions
The energy spectra and wavefunctions of up to 14 interacting quasielectrons
(QE's) in the Laughlin nu=1/3 fractional quantum Hall (FQH) state are
investigated using exact numerical diagonalization. It is shown that at
sufficiently high density the QE's form pairs or larger clusters. This
behavior, opposite to Laughlin correlations, invalidates the (sometimes
invoked) reapplication of the composite fermion picture to the individual QE's.
The series of finite-size incompressible ground states are identified at the QE
filling factors nu_QE=1/2, 1/3, 2/3, corresponding to the electron fillings
nu=3/8, 4/11, 5/13. The equivalent quasihole (QH) states occur at nu_QH=1/4,
1/5, 2/7, corresponding to nu=3/10, 4/13, 5/17. All these six novel FQH states
were recently discovered experimentally. Detailed analysis indicates that QE or
QH correlations in these states are different from those of well-known FQH
electron states (e.g., Laughlin or Moore-Read states), leaving the origin of
their incompressibility uncertain. Halperin's idea of Laughlin states of QP
pairs is also explored, but is does not seem adequate.Comment: 14 pages, 9 figures; revision: 1 new figure, some new references,
some new data, title chang
A New Probe of the Planet-Forming Region in T Tauri Disks
We present new observations of the FUV (1100-2200 Angstrom) radiation field
and the near- to mid-IR (3--13.5 micron) spectral energy distribution (SED) of
a sample of T Tauri stars selected on the basis of bright molecular disks (GM
Aur, DM Tau, LkCa15). In each source we find evidence for Ly alpha induced H2
fluorescence and an additional source of FUV continuum emission below 1700
Angstroms. Comparison of the FUV spectra to a model of H2 excitation suggests
that the strong continuum emission is due to electron impact excitation of H2.
The ultimate source of this excitation is likely X-ray irradiation which
creates hot photo-electrons mixed in the molecular layer. Analysis of the SED
of each object finds the presence of inner disk gaps with sizes of a few AU in
each of these young (~1 Myr) stellar systems. We propose that the presence of
strong H2 continuum emission and inner disk clearing are related by the
increased penetration power of high energy photons in gas rich regions with low
grain opacity.Comment: 5 pages, 3 figures, accepted by ApJ Letter
Copper Heat Exchanger for the External Auxiliary Bus-Bars Routing Line in the LHC Insertion Regions
The corrector magnets and the main quadrupoles of the LHC dispersion suppressors are powered by a special superconducting line (called auxiliary bus-bars line N), external to the cold mass and housed in a 50 mm diameter stainless steel tube fixed to the cold mass. As the line is periodically connected to the cold mass, the same gaseous and liquid helium cools both the magnets and the line. The final sub-cooling process (from around 4.5 K down to 1.9 K) consists in the phase transformation from liquid to superfluid helium. Heat is extracted from the line through the magnets via their point of junction. In dispersion suppressor zones, approximately 40 m long, the sub-cooling of the line is slightly delayed with respect to the magnets. This might have an impact on the readiness of the accelerator for operation. In order to accelerate the process, a special heat exchanger has been designed. It is located in the middle of the dispersion suppressor portion of the line. Its main function consists in providing a local point of heat extraction, creating two additional lambda fronts that propagate in opposite directions towards the extremities of the line. Both the numerical model and the sub-cooling analysis are presented in the paper for different configurations of the line. The design, manufacturing and integration aspects of the heat exchanger are described
Cometary Dust in the Debris Disks of HD 31648 and HD 163296: Two ``Baby'' beta Pics
The debris disks surrounding the pre-main sequence stars HD 31648 and HD
163296 were observed spectroscopically between 3 and 14 microns. Both possess a
silicate emission feature at 10 microns which resembles that of the star beta
Pictoris and those observed in solar system comets. The structure of the band
is consistent with a mixture of olivine and pyroxene material, plus an
underlying continuum of unspecified origin. The similarity in both size and
structure of the silicate band suggests that the material in these systems had
a processing history similar to that in our own solar system prior to the time
that the grains were incorporated into comets.Comment: 17 pages, AASTeX, 5 eps figures, accepted for publication in Ap.
- …
