571 research outputs found

    A CSI-Based Human Activity Recognition Using Deep Learning

    Get PDF
    The Internet of Things (IoT) has become quite popular due to advancements in Information and Communications technologies and has revolutionized the entire research area in Human Activity Recognition (HAR). For the HAR task, vision-based and sensor-based methods can present better data but at the cost of users’ inconvenience and social constraints such as privacy issues. Due to the ubiquity of WiFi devices, the use of WiFi in intelligent daily activity monitoring for elderly persons has gained popularity in modern healthcare applications. Channel State Information (CSI) as one of the characteristics ofWiFi signals, can be utilized to recognize different human activities. We have employed a Raspberry Pi 4 to collect CSI data for seven different human daily activities, and converted CSI data to images and then used these images as inputs of a 2D Convolutional Neural Network (CNN) classifier. Our experiments have shown that the proposed CSI-based HAR outperforms other competitor methods including 1D-CNN, Long Short-Term Memory (LSTM), and Bi-directional LSTM, and achieves an accuracy of around 95% for seven activities

    Using Synthetic Data to Enhance the Accuracy of Fingerprint-Based Localization: A Deep Learning Approach

    Get PDF
    Human-centered data collection is typically costly and implicates issues of privacy. Various solutions have been proposed in the literature to reduce this cost, such as crowd-sourced data collection, or the use of semisupervised algorithms. However, semisupervised algorithms require a source of unlabeled data, and crowd-sourcing methods require numbers of active participants. An alternative passive data collection modality is fingerprint-based localization. Such methods use received signal strength or channel state information in wireless sensor networks to localize users in indoor/outdoor environments. In this letter, we introduce a novel approach to reduce training data collection costs in fingerprint-based localization by using synthetic data. Generative adversarial networks (GANs) are used to learn the distribution of a limited sample of collected data and, following this, to produce synthetic data that can be used to augment the real collected data in order to increase overall positioning accuracy. Experimental results on a benchmark dataset show that by applying the proposed method and using a combination of 10% collected data and 90% synthetic data, we can obtain essentially similar positioning accuracy to that which would be obtained by using the full set of collected data. This means that by employing GAN-generated synthetic data, we can use 90% less real data, thereby reducing data-collection costs while achieving acceptable accuracy

    Safety and efficacy of PDpoetin for management of anemia in patients with end stage renal disease on maintenance hemodialysis: Results from a phase IV clinical trial

    Get PDF
    Recombinant human erythropoietin (rHuEPO) is available for correcting anemia. PDpoetin, a new brand of rHuEPO, has been certified by Food and Drug Department of Ministry of Health and Medical Education of Iran for clinical use in patients with chronic kidney disease. We conducted this post-marketing survey to further evaluate the safety and efficacy of PDpoetin for management of anemia in patients on maintenance hemodialysis. Patients from 4 centers in Iran were enrolled for this multicenter, open-label, uncontrolled phase IV clinical trial. Changes in blood chemistry, hemoglobin and hematocrit levels, renal function, and other characteristics of the patients were recorded for 4 months; 501 of the patients recruited, completed this study. Mean age of the patients was 50.9 (±16.2) years. 48.7 of patients were female. Mean of the hemoglobin value in all of the 4 centers was 9.29 (±1.43) g/dL at beginning of the study and reached 10.96 (±2.23) g/dL after 4 months and showed significant increase overall (P<0.001). PDpoetin dose was stable at 50-100 U/kg thrice weekly. Hemorheologic disturbancesand changes in blood electrolytes was not observed. No case of immunological reactions to PDpoetin was observed. Our study, therefore, showed that PDpoetin has significantly raised the level of hemoglobin in the hemodialysis patients (about 1.7±0.6 g/dL). Anemia were successfully corrected in 49 of patients under study. Use of this biosimilar was shown to be safe and effective for the maintenance of hemoglobin in patients on maintenance hemodialysis. © A.N. Javidan et al., 2014

    Evaluation of mTOR-regulated mRNA translation.

    No full text
    mTOR, the mammalian target of rapamycin, regulates protein synthesis (mRNA translation) by affecting the phosphorylation or activity of several translation factors. Here, we describe methods for studying the impact of mTOR signalling on protein synthesis, using inhibitors of mTOR such as rapamycin (which impairs some of its functions) or mTOR kinase inhibitors (which probably block all functions).To assess effects of mTOR inhibition on general protein synthesis in cells, the incorporation of radiolabelled amino acids into protein is measured. This does not yield information on the effects of mTOR on the synthesis of specific proteins. To do this, two methods are described. In one, stable-isotope labelled amino acids are used, and their incorporation into new proteins is determined using mass spectrometric methods. The proportions of labelled vs. unlabeled versions of each peptide from a given protein provide quantitative information about the rate of that protein's synthesis under different conditions. Actively translated mRNAs are associated with ribosomes in polyribosomes (polysomes); thus, examining which mRNAs are found in polysomes under different conditions provides information on the translation of specific mRNAs under different conditions. A method for the separation of polysomes from non-polysomal mRNAs is describe

    Ultra-High Energy Cosmic Rays and Stable H-dibaryon

    Get PDF
    It is shown that an instanton induced interaction between quarks produces a very deeply bound H-dibaryon with mass below 2M_N, M_H=1718 MeV. Therefore the H-dibaryon is predicted to be a stable particle. The reaction of photodisintegration of H-dibaryon to 2Λ2\Lambda in during of its penetration into cosmic microwave background will result in a new possible cut-off in the cosmic-ray spectrum. This provides an explanation of ultra-high energy cosmic ray events observed above the GZK cut-off as a result of the strong interaction of high energy H-dibaryons from cosmic rays with nuclei in Earth's atmosphere.Comment: 5 pages, Late

    Dihyperon in Chiral Colour Dielectric Model

    Full text link
    The mass of dihyperon with spin, parity Jπ=0+J^{\pi}=0^{+} and isospin I=0I = 0 is calculated in the framework of Chiral colour dielectric model. The wave function of the dihyperon is expressed as a product of two colour-singlet baryon clusters. Thus the quark wave functions within the cluster are antisymmetric. Appropriate operators are then used to antisymmetrize inter-cluster quark wave functions. The radial part of the quark wavefunctions are obtained by solving the the quark and dielectric field equations of motion obtained in the Colour dielectric model. The mass of the dihyperon is computed by including the colour magnetic energy as well as the energy due to meson interaction. The recoil correction to the dihyperon mass is incorporated by Peierls-Yoccoz technique. We find that the mass of the dihyperon is smaller than the ΛΛ\Lambda-\Lambda threshold by over 100 MeV. The implications of our results on the present day relativistic heavy ion experiments is discussed.Comment: LaTeX, 13 page

    Do Search for Dibaryonic De - Excitations in Relativistic Nuclear Reactions

    Full text link
    Some odd characteristics are observed in the single particle distributions obtained from He+Li He + Li interactions at 4.5AGeV/c 4.5 AGeV/c momenta which are explained as the manifestation of a new mechanism of strangeness production via dibaryonic de-excitations. A signature of the formation of hadronic and baryonic clusters is also reported. The di-pionic signals of the dibaryonic orbital de-excitations are analyzed in the frame of the MIT - bag Model and a Monte Carlo simulation.The role played by the dibaryonic resonances in relativistic nuclear collisions could be a significant one. Key words: Relativistic nuclear interactions negative pions, negative kaons, di-pions , streamer chamber, dibaryons, MIT - bag model PACS codes: 25.75.+r,14.40.Aq,14.20.Pt,12.40.AsComment: 17 pages,LATEX, preprint ICTP -243 1993,figures available by reques

    Neutron Star Constraints on the H Dibaryon

    Get PDF
    We study the influence of a possible H dibaryon condensate on the equation of state and the overall properties of neutron stars whose population otherwise contains nucleons and hyperons. In particular, we are interested in the question of whether neutron stars and their masses can be used to say anything about the existence and properties of the H dibaryon. We find that the equation of state is softened by the appearance of a dibaryon condensate and can result in a mass plateau for neutron stars. If the limiting neutron star mass is about that of the Hulse-Taylor pulsar a condensate of H dibaryons of vacuum mass 2.2 GeV and a moderately attractive potential in the medium could not be ruled out. On the other hand, if the medium potential were even moderately repulsive, the H, would not likely exist in neutron stars. If neutron stars of about 1.6 solar mass were known to exist, attractive medium effects for the H could be ruled out. Certain ranges of dibaryon mass and potential can be excluded by the mass of the Hulse-Taylor pulsar which we illustrate graphically.Comment: Revised by the addition of a figure showing the region of dibaryon mass and potential excluded by the Hulse-Taylor pulsar. 18 pages, 11 figures, latex (submitted to Phys. Rev. C
    corecore