100 research outputs found

    Approximate Computation of DFT without Performing Any Multiplications: Applications to Radar Signal Processing

    Full text link
    In many practical problems it is not necessary to compute the DFT in a perfect manner including some radar problems. In this article a new multiplication free algorithm for approximate computation of the DFT is introduced. All multiplications (a×b)(a\times b) in DFT are replaced by an operator which computes sign(a×b)(a+b)sign(a\times b)(|a|+|b|). The new transform is especially useful when the signal processing algorithm requires correlations. Ambiguity function in radar signal processing requires high number of multiplications to compute the correlations. This new additive operator is used to decrease the number of multiplications. Simulation examples involving passive radars are presented

    Projections Onto Convex Sets (POCS) Based Optimization by Lifting

    Get PDF
    Two new optimization techniques based on projections onto convex space (POCS) framework for solving convex and some non-convex optimization problems are presented. The dimension of the minimization problem is lifted by one and sets corresponding to the cost function are defined. If the cost function is a convex function in R^N the corresponding set is a convex set in R^(N+1). The iterative optimization approach starts with an arbitrary initial estimate in R^(N+1) and an orthogonal projection is performed onto one of the sets in a sequential manner at each step of the optimization problem. The method provides globally optimal solutions in total-variation, filtered variation, l1, and entropic cost functions. It is also experimentally observed that cost functions based on lp, p<1 can be handled by using the supporting hyperplane concept

    Granulocyte-colony stimulating factor for stroke treatment: mechanisms of action and efficacy in preclinical studies

    Get PDF
    G-CSF is widely employed for the treatment of chemotherapy-induced neutropenia. Recently, neuroprotective effects of G-CSF in animal stroke models were discovered including infarct size reduction and enhancement of functional recovery. The underlying mechanisms of action of G-CSF in ischemia appear to be a direct anti-apoptotic activity in neurons and a neurogenesis inducing capacity. Additional effects may be based on the stimulation of new blood-vessel formation, the stimulation of immunocompetence and -modulation as well as on bone marrow mobilization. In addition to a discussion of these mechanisms, we will review the available preclinical studies and analyze their impact on the overall efficacy of G-CSF in experimental stroke

    Sodium-Dependent Vitamin C Transporter 2 (SVCT2) Expression and Activity in Brain Capillary Endothelial Cells after Transient Ischemia in Mice

    Get PDF
    Expression and transport activity of Sodium-dependent Vitamin C Transporter 2 (SVCT2) was shown in various tissues and organs. Vitamin C was shown to be cerebroprotective in several animal models of stroke. Data on expression, localization and transport activity of SVCT2 after cerebral ischemia, however, has been scarce so far. Thus, we studied the expression of SVCT2 after middle cerebral artery occlusion (MCAO) in mice by immunohistochemistry. We found an upregulation of SVCT2 after stroke. Co-stainings with Occludin, Von-Willebrand Factor and CD34 demonstrated localization of SVCT2 in brain capillary endothelial cells in the ischemic area after stroke. Time-course analyses of SVCT2 expression by immunohistochemistry and western blots showed upregulation in the subacute phase of 2–5 days. Radioactive uptake assays using 14C-labelled ascorbic acid showed a significant increase of ascorbic acid uptake into the brain after stroke. Taken together, these results provide evidence for the expression and transport activity of SVCT2 in brain capillary endothelial cells after transient ischemia in mice. These results may lead to the development of novel neuroprotective strategies in stroke therapy

    Granulocyte-Colony Stimulating Factor (G-CSF) in Stroke Patients with Concomitant Vascular Disease—A Randomized Controlled Trial

    Get PDF
    G-CSF has been shown in animal models of stroke to promote functional and structural regeneration of the central nervous system. It thus might present a therapy to promote recovery in the chronic stage after stroke.Here, we assessed the safety and tolerability of G-CSF in chronic stroke patients with concomitant vascular disease, and explored efficacy data. 41 patients were studied in a double-blind, randomized approach to either receive 10 days of G-CSF (10 µg/kg body weight/day), or placebo. Main inclusion criteria were an ischemic infarct >4 months prior to inclusion, and white matter hyperintensities on MRI. Primary endpoint was number of adverse events. We also explored changes in hand motor function for activities of daily living, motor and verbal learning, and finger tapping speed, over the course of the study.Adverse events (AEs) were more frequent in the G-CSF group, but were generally graded mild or moderate and from the known side-effect spectrum of G-CSF. Leukocyte count rose after day 2 of G-CSF dosing, reached a maximum on day 8 (mean 42/nl), and returned to baseline 1 week after treatment cessation. No significant effect of treatment was detected for the primary efficacy endpoint, the test of hand motor function.These results demonstrate the feasibility, safety and reasonable tolerability of subcutaneous G-CSF in chronic stroke patients. This study thus provides the basis to explore the efficacy of G-CSF in improving chronic stroke-related deficits.ClinicalTrials.gov NCT00298597

    Spleen transcriptome response to infection with avian pathogenic Escherichia coli in broiler chickens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Avian pathogenic <it>Escherichia coli </it>(APEC) is detrimental to poultry health and its zoonotic potential is a food safety concern. Regulation of antimicrobials in food-production animals has put greater focus on enhancing host resistance to bacterial infections through genetics. To better define effective mechanism of host resistance, global gene expression in the spleen of chickens, harvested at two times post-infection (PI) with APEC, was measured using microarray technology, in a design that will enable investigation of effects of vaccination, challenge, and pathology level.</p> <p>Results</p> <p>There were 1,101 genes significantly differentially expressed between severely infected and non-infected groups on day 1 PI and 1,723 on day 5 PI. Very little difference was seen between mildly infected and non-infected groups on either time point. Between birds exhibiting mild and severe pathology, there were 2 significantly differentially expressed genes on day 1 PI and 799 on day 5 PI. Groups with greater pathology had more genes with increased expression than decreased expression levels. Several predominate immune pathways, Toll-like receptor, Jak-STAT, and cytokine signaling, were represented between challenged and non-challenged groups. Vaccination had, surprisingly, no detectible effect on gene expression, although it significantly protected the birds from observable gross lesions. Functional characterization of significantly expressed genes revealed unique gene ontology classifications during each time point, with many unique to a particular treatment or class contrast.</p> <p>Conclusions</p> <p>More severe pathology caused by APEC infection was associated with a high level of gene expression differences and increase in gene expression levels. Many of the significantly differentially expressed genes were unique to a particular treatment, pathology level or time point. The present study not only investigates the transcriptomic regulations of APEC infection, but also the degree of pathology associated with that infection. This study will allow for greater discovery into host mechanisms for disease resistance, providing targets for marker assisted selection and advanced drug development.</p
    corecore