3 research outputs found

    Using Photovoltaic Panels for Irrigation

    No full text
    Renewable energy sources are getting more and more popular due to the increasing world population and decreasing conventional sources. In recent years, climate change and global warming have also increased the amount of water needed for irrigation. Renewable energy sources may therefore be used to develop photovoltaic pumping systems. Using photovoltaic arrays to drive water pumping units for irrigation in remote areas and desert regions is an economical solution. The sizing of photovoltaic pumping systems is important in order to optimize the power peak of photovoltaic array and for the choice of motor, pump and inverter (when needed). A photovoltaic pumping system consists of at least six basic components: a photovoltaic array, a dc pump motor, a battery-charge regulator, a water tank, humidity sensors and an electronic control unit. The usage of such system is in a natural relationship between the availability of solar radiation and water requirement. In this study, the designed system is an electronically controlled system, based on humidity sensors. The water requirement increases with increasing solar radiation. Hence, the dc motor is operated by means of an electronic control unit. When humidity in the soil reaches a certain value, the dc motor is stopped. The operation of the control unit relies on the data received from humidity sensors. The designed system was implemented and the obtained results were satisfactory

    Experimental malaria-associated acute respiratory distress syndrome is dependent on the parasite-host combination and coincides with normocyte invasion

    No full text
    Abstract Background Malaria-associated acute respiratory distress syndrome (MA-ARDS) is a complication of malaria with a lethality rate of up to 80% despite anti-malarial treatment. It is characterized by a vast infiltration of leukocytes, microhaemorrhages and vasogenic oedema in the lungs. Previously, a mouse model for MA-ARDS was developed by infection of C57BL/6 mice with the Edinburgh line NK65-E of Plasmodium berghei. Results Here, both host and parasite factors were demonstrated to play crucial roles in the development and severity of lung pathology. In particular, the genetic constitution of the host was an important determinant in the development of MA-ARDS. Both male and female C57BL/6, but not BALB/c, mice developed MA-ARDS when infected with P. berghei NK65-E. However, the New York line of P. berghei NK65 (NK65-NY) did not induce demonstrable MA-ARDS, despite its accumulation in the lungs and fat tissue to a similar or even higher extent as P. berghei NK65-E. These two commonly used lines of P. berghei differ in their red blood cell preference. P. berghei NK65-NY showed a stronger predilection for reticulocytes than P. berghei NK65-E and this appeared to be associated with a lower pathogenicity in the lungs. The pulmonary pathology in the C57BL/6/P. berghei NK65-E model was more pronounced than in the model with infection of DBA/2 mice with P. berghei strain ANKA. The transient lung pathology in DBA/2 mice infected with P. berghei ANKA coincided with the infection phase in which parasites mainly infected normocytes. This phase was followed by a less pathogenic phase in which P. berghei ANKA mainly infected reticulocytes. Conclusions The propensity of mice to develop MA-ARDS during P. berghei infection depends on both host and parasite factors and appears to correlate with RBC preference. These data provide insights in induction of MA-ARDS and may guide the choice of different mouse-parasite combinations to study lung pathology
    corecore