445 research outputs found

    The Influence of Viscoelastic Damping on the Dynamics — Behavior of an Embedded Foundation

    Get PDF
    The present paper examines the problem of the dynamic behavior of a rigid circular foundation deeply embedded in bonded contact with a viscoelastic soil mass of infinite extent. The viscous phenomena are accounted for by the introduction of a complex shear modulus. By employing a rigorous mathematical analysis of the problem an explicit results is derived for the dynamic axial compliance of the embedded foundation. The numerical results presented in the paper illustrate the manner in which viscous damping influences this compliance

    Compaction of Multiphase Geomaterials

    Get PDF
    Abstract: The compaction of soils can lead to soil profiles that have properties that are less desirable from the point of view of agricultural use of soils. The paper presents elementary models of soil compaction based on continuum theories of poro-elasto-plasticity. Attention is restricted to the consideration of the quasi-static loading of a saturated one-dimensional column of soil that can experience fluid flow in its pore space and reversible and irreversible deformations of the porous skeleton

    On the incompatibility of strains and its application to mesoscopic studies of plasticity

    Full text link
    Structural transitions are invariably affected by lattice distortions. If the body is to remain crack-free, the strain field cannot be arbitrary but has to satisfy the Saint-Venant compatibility constraint. Equivalently, an incompatibility constraint consistent with the actual dislocation network has to be satisfied in media with dislocations. This constraint can be incorporated into strain-based free energy functionals to study the influence of dislocations on phase stability. We provide a systematic analysis of this constraint in three dimensions and show how three incompatibility equations accommodate an arbitrary dislocation density. This approach allows the internal stress field to be calculated for an anisotropic material with spatially inhomogeneous microstructure and distribution of dislocations by minimizing the free energy. This is illustrated by calculating the stress field of an edge dislocation and comparing it with that of an edge dislocation in an infinite isotropic medium. We outline how this procedure can be utilized to study the interaction of plasticity with polarization and magnetization.Comment: 6 pages, 2 figures; will appear in Phys. Rev.

    AC electrokinetic phenomena over semiconductive surfaces: effective electric boundary conditions and their applications

    Full text link
    Electrokinetic boundary conditions are derived for AC electrokinetic (ACEK) phenomena over leaky dielectric (i.e., semiconducting) surfaces. Such boundary conditions correlate the electric potentials across the semiconductor-electrolyte interface (consisting of the electric double layer (EDL) inside the electrolyte solutions and the space charge layer (SCL) inside the semiconductors) under AC electric fields with arbitrary wave forms. The present electrokinetic boundary conditions allow for evaluation of induced zeta potential contributed by both bond charges (due to electric polarization) and free charges (due to electric conduction) from the leaky dielectric materials. Subsequently, we demonstrate the applications of these boundary conditions in analyzing the ACEK phenomena around a semiconducting cylinder. It is concluded that the flow circulations exist around the semiconducting cylinder and are shown to be stronger under an AC field with lower frequency and around a cylinder with higher conductivity.Comment: 29 pages, 4 figure

    Ecological niche modeling for conservation planning of an endemic snail in the verge of becoming a pest in cardamom plantations in the Western Ghats biodiversity hotspot

    Get PDF
    Conservation managers and policy makers are often confronted with a challenging dilemma of devising suitable strategies to maintain agricultural productivity while conserving endemic species that at the early stages of becoming pests of agricultural crops. Identification of environmental factors conducive to species range expansion for forecasting species distribution patterns will play a central role in devising management strategies to minimize the conflict between the agricultural productivity and biodiversity conservation. Here, we present results of a study that predicts the distribution of Indrella ampulla, a snail endemic to the Western Ghats biodiversity hotspot, which is becoming a pest in cardamom (Ellettaria cardamomum) plantations. We determined the distribution patterns and niche overlap between I. ampulla and Ellettaria cardamomum using maximum entropy (MaxEnt) niche modeling techniques under current and future (2020–2080) climatic scenarios. The results showed that climatic (precipitation of coldest quarter and isothermality) and soil (cation exchange capacity of soil [CEC]) parameters are major factors that determine the distribution of I. ampulla in Western Ghats. The model predicted cardamom cultivation areas in southern Western Ghats are highly sensitive to invasion of I. ampulla under both present and future climatic conditions. While the land area in the central Western Ghats is predicted to become unsuitable for I. ampulla and Ellettaria cardamomum in future, we found 71% of the Western Ghats land area is suitable for Ellettaria cardamomum cultivation and 45% suitable for I. ampulla, with an overlap of 35% between two species. The resulting distribution maps are invaluable for policy makers and conservation managers to design and implement management strategies minimizing the conflicts to sustain agricultural productivity while maintaining biodiversity in the region

    An interdisciplinary approach towards improved understanding of soil deformation during compaction

    Get PDF
    International audienceSoil compaction not only reduces available pore volume in which fluids are stored, but it alters the arrangement of soil constituents and pore geometry, thereby adversely impacting fluid transport and a range of soil ecological functions. Quantitative understanding of stress transmission and deformation processes in arable soils remains limited. Yet such knowledge is essential for better predictions of effects of soil management practices such as agricultural field traffic on soil functioning. Concepts and theory used in agricultural soil mechanics (soil compaction and soil tillage) are often adopted from conventional soil mechanics (e.g. foundation engineering). However, in contrast with standard geotechnical applications, undesired stresses applied by agricultural tyres/tracks are highly dynamic and last for very short times. Moreover, arable soils are typically unsaturated and contain important secondary structures (e.g. aggregates), factors important for affecting their soil mechanical behaviour. Mechanical processes in porous media are not only of concern in soil mechanics, but also in other fields including geophysics and granular material science. Despite similarity of basic mechanical processes, theoretical frameworks often differ and reflect disciplinary focus. We review concepts from different but complementary fields concerned with porous media mechanics and highlight opportunities for synergistic advances in understanding deformation and compaction of arable soils. We highlight the important role of technological advances in non-destructive measurement methods at pore (X-ray tomography) and soil profile (seismic) scales that not only offer new insights into soil architecture and enable visualization of soil deformation, but are becoming instrumental in the development and validation of new soil compaction models. The integration of concepts underlying dynamic processes that modify soil pore spaces and bulk properties will improve the understanding of how soil management affect vital soil mechanical, hydraulic and ecological functions supporting plant growth

    Sensitivity of the stress response function to packing preparation

    Full text link
    A granular assembly composed of a collection of identical grains may pack under different microscopic configurations with microscopic features that are sensitive to the preparation history. A given configuration may also change in response to external actions such as compression, shearing etc. We show using a mechanical response function method developed experimentally and numerically, that the macroscopic stress profiles are strongly dependent on these preparation procedures. These results were obtained for both two and three dimensions. The method reveals that, under a given preparation history, the macroscopic symmetries of the granular material is affected and in most cases significant departures from isotropy should be observed. This suggests a new path toward a non-intrusive test of granular material constitutive properties.Comment: 15 pages, 11 figures, some numerical data corrected, to appear in J. Phys. Cond. Mat. special issue on Granular Materials (M. Nicodemi Editor

    Objective assessment of electrode discrimination with the auditory change complex in adult cochlear implant users

    Get PDF
    The spatial auditory change complex (ACC) is a cortical response elicited by a change in place of stimulation. There is growing evidence that it provides a useful objective measure of electrode discrimination in cochlear implant (CI) users. To date, the spatial ACC has only been measured in relatively experienced CI users with one type of device. Early assessment of electrode discrimination could allow auditory stimulation to be optimized during a potentially sensitive period of auditory rehabilitation. In this study we used a direct stimulation paradigm to measure the spatial ACC in both pre- and post-lingually deafened adults. We show that it is feasible to measure the spatial ACC in different CI devices and as early as 1 week after CI switch-on. The spatial ACC has a strong relationship with performance on a behavioural discrimination task and in some cases provides information over and above behavioural testing. We suggest that it may be useful to measure the spatial ACC to guide auditory rehabilitation and improve hearing performance in CI users

    Referrals to a facial pain service

    Get PDF
    AIM: To assess the quality of referral letters to a facial pain service and highlight the key requirements of such letters. METHOD: The source of all referral letters to the service for five years was established. For one year the information provided in 94 referrals was assessed. Using a predetermined checklist of essential information the referral letters were compared to these set criteria. RESULTS: The service received 7,001 referrals and, on average, general dental practitioners (GDPs) referred 303 more patients per year than general medical practitioners (GMPs). Seventy-one percent of all referrals were from primary care practitioners, the rest were from specialists. Over 70% of GMP and 52% of GDP letters included a past medical history, with GMPs more likely to suggest a possible diagnosis and include previous secondary care referrals. The mean score for GMP referrals compared to the standard proforma (maximum of 12) was 5.6 and for GDP referrals 5.0. A relevant drug history was included by 75.6% GMP compared to 38.7% of GDPs. GMPs were more likely to include any relevant mental health history. CONCLUSIONS: The overall quality of referral letters is low which makes it difficult for the specialists to provide robust treatment plans
    • …
    corecore