1,619 research outputs found

    Organizing to Win: Introduction

    Get PDF
    [Excerpt] The American labor movement is at a watershed. For the first time since the early years of industrial unionism sixty years ago, there is near-universal agreement among union leaders that the future of the movement depends on massive new organizing. In October 1995, John Sweeney, Richard Trumka, and Linda Chavez-Thompson were swept into the top offices of the AFL-CIO, following a campaign that promised organizing at an unprecedented pace and scale. Since taking office, the new AFL-CIO leadership team has created a separate organizing department and has committed $20 million to support coordinated large-scale industry-based organizing drives. In addition, in the summer of 1996, the AFL-CIO launched the Union Summer program, which placed more than a thousand college students and young workers in organizing campaigns across the country

    Magnetic characterization of the frustrated three-leg ladder compound [(CuCl2tachH)3Cl]Cl2

    Full text link
    We report the magnetic features of a new one-dimensional stack of antiferromagnetically coupled equilateral copper(II) triangles. High-field magnetization measurements show that the interaction between the copper triangles is of the same order of magnitude as the intra-triangle exchange although only coupled via hydrogen bonds. The infinite chain turns out to be an interesting example of a frustrated cylindrical three-leg ladder with competing intra- and inter-triangle interactions. We demonstrate that the ground state is a spin singlet which is gaped from the triplet excitation.Comment: 6 pages, 9 figures, revised version submitted to Phys. Rev. B. More information at http://obelix.physik.uni-osnabrueck.de/~schnack

    Site amplification estimates in the Garigliano valley, central Italy, based on dense array measurements of ambient noise

    Get PDF
    A frequency-domain formulation of the Aki (1957, 1965) autocorrelation method has been applied to seismic noise recorded by a 100-m wide circular array deployed on soft Holocene sediments in the Garigliano river valley, where a large amplification of ground motion during earthquakes was experienced (Rovelli et al., 1988). The application of this method to ambient noise recordings demonstrates that microtremors in the valley are dispersive and dominated by surface waves. By assuming that the vertical component reflects Rayleigh wave motion, we obtain a dispersion curve that is interpreted in terms of a layered shear-wave velocity structure. Layer thicknesses are constrained by the stratigraphic information provided by a deep hole drilled in the area, and shear velocities are estimated by means of a trial-and-error approach to achieve a satisfactory fit of the ambient noise dispersion. The best-fit velocity model is used to compute a theoretical transfer function, which is then compared with an average spectral ratio obtained from earthquake weak ground motions recorded at two stations, one in the valley and the other on a limestone reference site. An overall agreement is found between the theoretical curve and the observed spectral ratios. The discrepancies that do exist may be ascribed to the assumption of 1-D inhomogeneity which considerably simplifies the theoretical transfer function. Our results show that the spatial-correlation method can be useful to infer velocity structure down to depths of hundreds of meters, when generalized geological informations are available, and can thus provide useful constraints for theoretical methodologies for the prediction of site response

    Quantum Heisenberg antiferromagnet on low-dimensional frustrated lattices

    Full text link
    Using a lattice-gas description of the low-energy degrees of freedom of the quantum Heisenberg antiferromagnet on the frustrated two-leg ladder and bilayer lattices we examine the magnetization process at low temperatures for these spin models. In both cases the emergent discrete degrees of freedom implicate a close relation of the frustrated quantum Heisenberg antiferromagnet to the classical lattice gas with finite nearest-neighbor repulsion or, equivalently, to the Ising antiferromagnet in a uniform magnetic field. Using this relation we obtain analytical results for thermodynamically large systems in the one-dimensional case. In the two-dimensional case we perform classical Monte Carlo simulations for systems of up to 100×100100 \times 100 sites.Comment: Submitted to Teoreticheskaya i Matematicheskaya Fizika (special issue dedicated to the 90th anniversary of Professor Sergei Vladimirovich Tyablikov

    New apparatus for DTA at 2000 bar: thermodynamic studies on Au, Ag, Al and HTSC oxides

    Full text link
    A new DTA (Differential Thermal Analysis) device was designed and installed in a Hot Isostatic Pressure (HIP) furnace in order to perform high-pressure thermodynamic investigations up to 2 kbar and 1200C. Thermal analysis can be carried out in inert or oxidising atmosphere up to p(O2) = 400 bar. The calibration of the DTA apparatus under pressure was successfully performed using the melting temperature (Tm) of pure metals (Au, Ag and Al) as standard calibration references. The thermal properties of these metals have been studied under pressure. The values of DV (volume variation between liquid and solid at Tm), ROsm (density of the solid at Tm) and ALPHAm (linear thermal expansion coefficient at Tm) have been extracted. A very good agreement was found with the existing literature and new data were added. This HP-DTA apparatus is very useful for studying the thermodynamics of those systems where one or more volatile elements are present, such as high TC superconducting oxides. DTA measurements have been performed on Bi,Pb(2223) tapes up to 2 kbar under reduced oxygen partial pressure (p(O2) = 0.07 bar). The reaction leading to the formation of the 2223 phase was found to occur at higher temperatures when applying pressure: the reaction DTA peak shifted by 49C at 2 kbar compared to the reaction at 1 bar. This temperature shift is due to the higher stability of the Pb-rich precursor phases under pressure, as the high isostatic pressure prevents Pb from evaporating.Comment: 6 figures, 3 tables, Thermodynamics, Thermal property, Bi-2223, fundamental valu

    Histone degradation in response to DNA damage enhances chromatin dynamics and recombination rates

    Get PDF
    Nucleosomes are essential for proper chromatin organization and the maintenance of genome integrity. Histones are post-translationally modified and often evicted at sites of DNA breaks, facilitating the recruitment of repair factors. Whether such chromatin changes are localized or genome-wide is debated. Here we show that cellular levels of histones drop 20-40% in response to DNA damage. This histone loss occurs from chromatin, is proteasome-mediated and requires both the DNA damage checkpoint and the INO80 nucleosome remodeler. We confirmed reductions in histone levels by stable isotope labeling of amino acids in cell culture (SILAC)-based mass spectrometry, genome-wide nucleosome mapping and fluorescence microscopy. Chromatin decompaction and increased fiber flexibility accompanied histone degradation, both in response to DNA damage and after artificial reduction of histone levels. As a result, recombination rates and DNA-repair focus turnover were enhanced. Thus, we propose that a generalized reduction in nucleosome occupancy is an integral part of the DNA damage response in yeast that provides mechanisms for enhanced chromatin mobility and homology search.</p
    corecore