25 research outputs found

    Floating sensor platform for the monitoring of water quality in urban and white-water environments

    Get PDF
    In the present paper the project of an embeddedsolution for the realization of a floating sensor platform for themonitoring of the water and ambient quality in a flowing waterenvironment is described. First results regarding the monitoringof the water conductivity and the ambient noise level underharsh environmental conditions in a karstic river and in the finalpart of a river going towards the Mediterranean Sea arepresented. It is further discussed how this kind of system can bemodified in order to serve as urban waterway multisensoryplatform, adding important features like connectivity, energyharvesting and determination of the platform position.

    Descriptive oceanography during the Frontal Air‐Sea Interaction Experiment: Medium‐ to large‐scale variability

    Get PDF
    Medium‐ and large‐scale oceanographic variability in the Sargasso Sea is examined during the Frontal Air‐Sea Interaction Experiment (FASINEX), focusing primarily on processes that influence the formation of subtropical fronts. From Fall to Spring the mean meridional gradient of meridional Ekman transport in the Subtropical Convergence Zone (STCZ) enhances the meridional sea surface temperature (Ts) gradients between 26° and 32°N. In the presence of this enhanced mean gradient, baroclinic eddies with zonal wavelengths of ≈800 km and periods of ≈200 days exert the dominant influence on the formation of subtropical fronts at medium and large scales. These eddies generate westward propagating Ts anomaly features with the same dominant wavelengths and periods. They are confined between 26° and 32°N and have amplitudes that occasionally exceed ±1°C. Ts fronts tend to be found within bands ≈200 km wide that roughly follow the periphery of these anomaly features. Deformation in the horizontal eddy current field is primarily responsible for the existence of these frontal bands. The migration of the strong front originally bracketed by the FASINEX moored array was related to the westward propagation of the larger‐scale eddy/anomaly/frontal‐band pattern. The moored array was located within a warm‐anomaly feature during most of the experiment, which produced exceptionally warm conditions in the upper ocean. These anomalies are confined between 26° and 32°N, not only because the relatively large seasonal mean Tsy there allows horizontal eddy currents to force strong anomalies, but also because the baroclinic eddies with wavelengths of ≈800 km and periods of ≈200 days are confined to the STCZ. Large meridional variability exists in many properties of the eddy field, much of which can be traced to the influence of the Sargasso Sea mean current field on eddy variability

    Long-term ecological research and the COVID-19 anthropause: A window to understanding social-ecological disturbance

    No full text
    https://kent-islandora.s3.us-east-2.amazonaws.com/node/17226/87203-thumbnail.jpgThe period of disrupted human activity caused by the COVID-19 pandemic, coined the “anthropause,” altered the nature of interactions between humans and ecosystems. It is uncertain how the anthropause has changed ecosystem states, functions, and feedback to human systems through shifts in ecosystem services. Here, we used an existing disturbance framework to propose new investigation pathways for coordinated studies of distributed, long-term social-ecological research to capture effects of the anthropause. Although it is still too early to comprehensively evaluate effects due to pandemic-related delays in data availability and ecological response lags, we detail three case studies that show how long-term data can be used to document and interpret changes in air and water quality and wildlife populations and behavior coinciding with the anthropause. These early findings may guide interpretations of effects of the anthropause as it interacts with other ongoing environmental changes in the future, particularly highlighting the importance of long-term data in separating disturbance impacts from natural variation and long-term trends. Effects of this global disturbance have local to global effects on ecosystems with feedback to social systems that may be detectable at spatial scales captured by nationally to globally distributed research networks.</p
    corecore