1,812 research outputs found

    Fingering Instability in a Water-Sand Mixture

    Full text link
    The temporal evolution of a water-sand interface driven by gravity is experimentally investigated. By means of a Fourier analysis of the evolving interface the growth rates are determined for the different modes appearing in the developing front. To model the observed behavior we apply the idea of the Rayleigh-Taylor instability for two stratified fluids. Carrying out a linear stability analysis we calculate the growth rates from the corresponding dispersion relations for finite and infinite cell sizes. Based on the theoretical results the viscosity of the suspension is estimated to be approximately 100 times higher than that of pure water, in agreement with other experimental findings.Comment: 11 pages, 12 figures, RevTeX; final versio

    Segregation in granular binary mixtures: Thermal diffusion

    Full text link
    A recent solution of the inelastic Boltzmann equation that applies for strong dissipation and takes into account non-equipartition of energy is used to derive an explicit expression for the thermal diffusion factor. This parameter provides a criterion for segregation that involves all the parameters of the granular binary mixture (composition, masses, sizes, and coefficients of restitution). The present work is consistent with recent experimental results and extends previous results obtained in the intruder limit case.Comment: 4 figures. to be published in Europhys. Let

    A Characterisation of the Weylian Structure of Space-Time by Means of Low Velocity Tests

    Get PDF
    The compatibility axiom in Ehlers, Pirani and Schild's (EPS) constructive axiomatics of the space-time geometry that uses light rays and freely falling particles with high velocity, is replaced by several constructions with low velocity particles only. For that purpose we describe in a space-time with a conformal structure and an arbitrary path structure the radial acceleration, a Coriolis acceleration and the zig-zag construction. Each of these quantities give effects whose requirement to vanish can be taken as alternative version of the compatibility axiom of EPS. The procedural advantage lies in the fact, that one can make null-experiments and that one only needs low velocity particles to test the compatibility axiom. We show in addition that Perlick's standard clock can exist in a Weyl space only.Comment: to appear in Gen.Rel.Gra

    Robustness and timing of cellular differentiation through population-based symmetry breaking

    Get PDF
    During mammalian development, cell types expressing mutually exclusive genetic markers are differentiated from a multilineage primed state. These observations have invoked single-cell multistability view as the dynamical basis of differentiation. However, the robust regulative nature of mammalian development is not captured therein. Considering the well-established role of cell-cell communication in this process, we propose a fundamentally different dynamical treatment in which cellular identities emerge and are maintained on population level, as a novel unique solution of the coupled system. Subcritical system’s organization here enables symmetry-breaking to be triggered by cell number increase in a timed, self-organized manner. Robust cell type proportions are thereby an inherent feature of the resulting inhomogeneous solution. This framework is generic, as exemplified for early embryogenesis and neurogenesis cases. Distinct from mechanisms that rely on pre-existing asymmetries, we thus demonstrate that robustness and accuracy necessarily emerge from the cooperative behaviour of growing cell populations during development

    Optical bistability in subwavelength apertures containing nonlinear media

    Full text link
    We develop a self-consistent method to study the optical response of metallic gratings with nonlinear media embedded within their subwavelength slits. An optical Kerr nonlinearity is considered. Due to the large E-fields associated with the excitation of the transmission resonances appearing in this type of structures, moderate incoming fluxes result in drastic changes in the transmission spectra. Importantly, optical bistability is obtained for certain ranges of both flux and wavelength.Comment: 4 pages, 4 figure

    Potential Energy Surface for H_2 Dissociation over Pd(100)

    Full text link
    The potential energy surface (PES) of dissociative adsorption of H_2 on Pd(100) is investigated using density functional theory and the full-potential linear augmented plane wave (FP-LAPW) method. Several dissociation pathways are identified which have a vanishing energy barrier. A pronounced dependence of the potential energy on ``cartwheel'' rotations of the molecular axis is found. The calculated PES shows no indication of the presence of a precursor state in front of the surface. Both results indicate that steering effects determine the observed decrease of the sticking coefficient at low energies of the H_2 molecules. We show that the topology of the PES is related to the dependence of the covalent H(s)-Pd(d) interactions on the orientation of the H_2 molecule.Comment: RevTeX, 8 pages, 5 figures in uufiles forma

    Do Stack Traces Help Developers Fix Bugs?

    Get PDF
    A widely shared belief in the software engineering community is that stack traces are much sought after by developers to support them in debugging. But limited empirical evidence is available to confirm the value of stack traces to developers. In this paper, we seek to provide such evidence by conducting an empirical study on the usage of stack traces by developers from the ECLIPSE project. Our results provide strong evidence to this effect and also throws light on some of the patterns in bug fixing using stack traces. We expect the findings of our study to further emphasize the importance of adding stack traces to bug reports and that in the future, software vendors will provide more support in their products to help general users make such information available when filing bug reports

    Pomelo, a tool for computing Generic Set Voronoi Diagrams of Aspherical Particles of Arbitrary Shape

    Full text link
    We describe the development of a new software tool, called "Pomelo", for the calculation of Set Voronoi diagrams. Voronoi diagrams are a spatial partition of the space around the particles into separate Voronoi cells, e.g. applicable to granular materials. A generalization of the conventional Voronoi diagram for points or monodisperse spheres is the Set Voronoi diagram, also known as navigational map or tessellation by zone of influence. In this construction, a Set Voronoi cell contains the volume that is closer to the surface of one particle than to the surface of any other particle. This is required for aspherical or polydisperse systems. Pomelo is designed to be easy to use and as generic as possible. It directly supports common particle shapes and offers a generic mode, which allows to deal with any type of particles that can be described mathematically. Pomelo can create output in different standard formats, which allows direct visualization and further processing. Finally, we describe three applications of the Set Voronoi code in granular and soft matter physics, namely the problem of packings of ellipsoidal particles with varying degrees of particle-particle friction, mechanical stable packings of tetrahedra and a model for liquid crystal systems of particles with shapes reminiscent of pearsComment: 4 pages, 9 figures, Submitted to Powders and Grains 201

    Real-time determination of laser beam quality by modal decomposition

    Full text link
    We present a real-time method to determine the beam propagation ratio M2 of laser beams. The all-optical measurement of modal amplitudes yields M2 parameters conform to the ISO standard method. The experimental technique is simple and fast, which allows to investigate laser beams under conditions inaccessible to other methods.Comment: 8 pages, 4 figures, published in Optics Expres
    • …
    corecore