140 research outputs found

    Immunohistochemical detection of somatostatin receptor subtypes sst1 and sst2A in human somatostatin receptor positive tumors

    Get PDF
    Although in situ hybridization has been used to examine the distribution of messenger RNA for somatostatin receptor subtypes (sst) in human tumors, the cellular localization of sst1 and sst2A receptors has not been reported. In this study, we describe the cellular localization of human sst1 and sst2A receptor proteins in both cryostat- and paraffin-embedded sections of 25 human tumor tissues using two recently developed polyclonal antibodies. Six somatostatin (SS) receptor (SSR) positive tumors (two gastrinomas, three carcinoids, one pheochromocytoma) and one SSR negative tumor (renal cell carcinoma), selected by positive and negative SSR autoradiography, respectively, were studied by both immunohistochemistry and Western blot analysis. The six SSR positive tumors expressed sst2A, while 4 of 5 expressed sst1 as well. The SSR negative tumor did not express either sst1 or sst2A. Western blot analysis of wheat germ agglutinin purified membrane proteins confirmed the presence of the sst1 and sst2A glycosylated receptors. The paraffin-embedded sections gave best information with respect to the subcellular localization. Sst1 immunoreactivity was observed both on the membrane and in the cytoplasm, while sst2A showed predominantly membrane-associated immunoreactivity. This subcellular distribution of sst1 or sst2A receptors was confirmed in paraffin-embedded sections of 8 additional intestinal carcinoids, 5 gastrinomas and 5 pheochromocytomas. Sst1 receptors were detected in 7 out of 8 carcinoids, in all gastrinomas, and in 4 out of 5 pheochromocytomas, while 6 out of 8 carcinoids, all gastrinomas, and 3 out of 5 pheochromocytomas expressed sst2A receptors. In conclusion, sst1 and sst2A receptors show a differential subcellular localization in human SSR positive tumors. The use of SSR subtype selective antibodies to detect the subcellular distribution of SSR subtypes in individual tumor cells is an important step forward to understand more about the pathophysiological role of the different SSR subtypes in human tumors

    Somatostatin receptor subtypes in human thymoma and inhibition of cell proliferation by octreotide in vitro

    Get PDF
    Somatostatin (SS) and SS receptor (SSR) subtypes, code-named sst1-5, are heterogeneously expressed in the normal human thymus. This suggests their involvement in controlling the immune and/or neuroendocrine functions in this organ. Moreover, recently a high in vivo uptake of [111In-DTPA-D-Phe1]octreotide has been reporte

    Somatostatin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Somatostatin (somatotropin release inhibiting factor) is an abundant neuropeptide, which acts on five subtypes of somatostatin receptor (SST1-SST5; nomenclature as agreed by the NC-IUPHAR Subcommittee on Somatostatin Receptors [89]). Activation of these receptors produces a wide range of physiological effects throughout the body including the inhibition of secretion of many hormones. Endogenous ligands for these receptors are somatostatin-14 (SRIF-14) and somatostatin-28 (SRIF-28). cortistatin-14 has also been suggested to be an endogenous ligand for somatostatin receptors [56]

    Somatostatin receptors in GtoPdb v.2023.1

    Get PDF
    Somatostatin (somatotropin release inhibiting factor) is an abundant neuropeptide, which acts on five subtypes of somatostatin receptor (SST1-SST5; nomenclature as agreed by the NC-IUPHAR Subcommittee on Somatostatin Receptors [98]). Activation of these receptors produces a wide range of physiological effects throughout the body including the inhibition of secretion of many hormones. Endogenous ligands for these receptors are somatostatin-14 (SRIF-14) and somatostatin-28 (SRIF-28). cortistatin-14 has also been suggested to be an endogenous ligand for somatostatin receptors [61]

    Effects of Glyphosate and its Formulation, Roundup, on Reproduction in Zebrafish (Danio rerio)

    Get PDF
    This is an open access article that is freely available in ORE or from the publisher's web site. Please cite the published version.Copyright Β© 2014 American Chemical SocietyRoundup and its active ingredient glyphosate are among the most widely used herbicides worldwide and may contaminate surface waters. Research suggests both Roundup and glyphosate induce oxidative stress in fish and may also cause reproductive toxicity in mammalian systems. We aimed to investigate the reproductive effects of Roundup and glyphosate in fish and the potential associated mechanisms of toxicity. To do this, we conducted a 21-day exposure of breeding zebrafish (Danio rerio) to 0.01, 0.5, and 10 mg/L (glyphosate acid equivalent) Roundup and 10 mg/L glyphosate. 10 mg/L glyphosate reduced egg production but not fertilization rate in breeding colonies. Both 10 mg/L Roundup and glyphosate increased early stage embryo mortalities and premature hatching. However, exposure during embryogenesis alone did not increase embryo mortality, suggesting that this effect was caused primarily by exposure during gametogenesis. Transcript profiling of the gonads revealed 10 mg/L Roundup and glyphosate induced changes in the expression of cyp19a1 and esr1 in the ovary and hsd3b2, cat, and sod1 in the testis. Our results demonstrate that these chemicals cause reproductive toxicity in zebrafish, although only at high concentrations unlikely to occur in the environment, and likely mechanisms of toxicity include disruption of the steroidogenic biosynthesis pathway and oxidative stress.Natural Environment Research Counci

    A Novel 5-Enolpyruvylshikimate-3-Phosphate Synthase Shows High Glyphosate Tolerance in Escherichia coli and Tobacco Plants

    Get PDF
    A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evaluated in the E. coli aroA-defective strain ER2799 and in transgenic tobacco plants. All five aroA genes could complement the aroA-defective strain ER2799, and AM79 aroA showed the highest glyphosate tolerance. Although glyphosate treatment inhibited the growth of both WT and transgenic tobacco plants, transgenic plants expressing AM79 aroA tolerated higher concentration of glyphosate and had a higher fresh weight and survival rate than plants expressing other aroA genes. When treated with high concentration of glyphosate, lower shikimate content was detected in the leaves of transgenic plants expressing AM79 aroA than transgenic plants expressing other aroA genes. These results suggest that AM79 aroA could be a good candidate for the development of transgenic glyphosate-tolerant crops

    Inhibition of Protein Aggregation: Supramolecular Assemblies of Arginine Hold the Key

    Get PDF
    BACKGROUND: Aggregation of unfolded proteins occurs mainly through the exposed hydrophobic surfaces. Any mechanism of inhibition of this aggregation should explain the prevention of these hydrophobic interactions. Though arginine is prevalently used as an aggregation suppressor, its mechanism of action is not clearly understood. We propose a mechanism based on the hydrophobic interactions of arginine. METHODOLOGY: We have analyzed arginine solution for its hydrotropic effect by pyrene solubility and the presence of hydrophobic environment by 1-anilino-8-naphthalene sulfonic acid fluorescence. Mass spectroscopic analyses show that arginine forms molecular clusters in the gas phase and the cluster composition is dependent on the solution conditions. Light scattering studies indicate that arginine exists as clusters in solution. In the presence of arginine, the reverse phase chromatographic elution profile of Alzheimer's amyloid beta 1-42 (Abeta(1-42)) peptide is modified. Changes in the hydrodynamic volume of Abeta(1-42) in the presence of arginine measured by size exclusion chromatography show that arginine binds to Abeta(1-42). Arginine increases the solubility of Abeta(1-42) peptide in aqueous medium. It decreases the aggregation of Abeta(1-42) as observed by atomic force microscopy. CONCLUSIONS: Based on our experimental results we propose that molecular clusters of arginine in aqueous solutions display a hydrophobic surface by the alignment of its three methylene groups. The hydrophobic surfaces present on the proteins interact with the hydrophobic surface presented by the arginine clusters. The masking of hydrophobic surface inhibits protein-protein aggregation. This mechanism is also responsible for the hydrotropic effect of arginine on various compounds. It is also explained why other amino acids fail to inhibit the protein aggregation

    Structures of Helicobacter pylori Shikimate Kinase Reveal a Selective Inhibitor-Induced-Fit Mechanism

    Get PDF
    Shikimate kinase (SK), which catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid in the presence of ATP, is the enzyme in the fifth step of the shikimate pathway for biosynthesis of aromatic amino acids. This pathway is present in bacteria, fungi, and plants but absent in mammals and therefore represents an attractive target pathway for the development of new antimicrobial agents, herbicides, and antiparasitic agents. Here we investigated the detailed structure–activity relationship of SK from Helicobacter pylori (HpSK). Site-directed mutagenesis and isothermal titration calorimetry studies revealed critical conserved residues (D33, F48, R57, R116, and R132) that interact with shikimate and are therefore involved in catalysis. Crystal structures of HpSKΒ·SO4, R57A, and HpSKβ€’shikimate-3-phosphateβ€’ADP show a characteristic three-layer architecture and a conformationally elastic region consisting of F48, R57, R116, and R132, occupied by shikimate. The structure of the inhibitor complex, E114Aβ€’162535, was also determined, which revealed a dramatic shift in the elastic LID region and resulted in conformational locking into a distinctive form. These results reveal considerable insight into the active-site chemistry of SKs and a selective inhibitor-induced-fit mechanism
    • …
    corecore