65 research outputs found

    Collective Perception: A Safety Perspective

    Get PDF
    Vehicle-to-everything (V2X) communication is seen as one of the main enabling technol-ogies for automated vehicles. Collective perception is especially promising, as it allows connected traffic participants to “see through the eyes of others” by sharing sensor-detected objects via V2X communication. Its benefit is typically assessed in terms of the increased object update rate, redun-dancy, and awareness. To determine the safety improvement thanks to collective perception, the authors introduce new metrics, which quantify the environmental risk awareness of the traffic par-ticipants. The performance of the V2X service is then analyzed with the help of the test platform TEPLITS, using real traffic traces from German highways, amounting to over 100 h of total driving time. The results in the considered scenarios clearly show that collective perception not only con-tributes to the accuracy and integrity of the vehicles’ environmental perception, but also that a V2X market penetration of at least 25% is necessary to increase traffic safety from a “risk of serious traffic accidents” to a “residual hypothetical risk of collisions without minor injuries” for traffic participants equipped with non-redundant 360° sensor systems. These results support the ongoing world-wide standardization efforts of the collective perception service

    Intracellular Ca2+ stores can account for the time course of LTP induction: a model of Ca2+ dynamics in dendritic spines

    Get PDF
    1. A model of Ca2+ dynamics in spines of CA1 hippocampal neurons is presented. In contrast to traditional models, which concentrate on the effects of Ca2+ influx, diffusion, buffering, and extrusion, we also consider the additional effect of intracellular Ca2+ stores. 2. It is shown that traditional models without Ca2+ stores cannot account for the time course of long-term potentiation (LTP) induction as found in recent experiments. Experimental data suggest that the intracellular Ca2+ concentration should be elevated for up to 2 s, whereas the Ca2+ concentration in standard models of Ca2+ dynamics decays much faster. 3. When intracellular Ca2+ stores are taken into account, a much slower decay is found. In particular, a model simulation with a stimulation paradigm consisting of two bursts of four impulses at 100 Hz each and variable interburst intervals can reproduce experimental results found for primed or theta-burst stimulation. 4. In our model, Ca2+ release from the store has a nonlinear, bell-shaped dependence on the intracellular Ca2+ concentration, similar to the one found for inositoltrisphosphate and ryanodine receptors. These receptors are known to control calcium release from intracellular stores. 5. Our model suggests an important role of intracellular calcium stores in the induction of LTP. The stores serve as a long-term calcium source that can sustain an intracellular Ca2+ concentration above the resting level for 1-2 s

    Spatial representation of temporal information through spike timing dependent plasticity

    Get PDF
    We suggest a mechanism based on spike time dependent plasticity (STDP) of synapses to store, retrieve and predict temporal sequences. The mechanism is demonstrated in a model system of simplified integrate-and-fire type neurons densely connected by STDP synapses. All synapses are modified according to the so-called normal STDP rule observed in various real biological synapses. After conditioning through repeated input of a limited number of of temporal sequences the system is able to complete the temporal sequence upon receiving the input of a fraction of them. This is an example of effective unsupervised learning in an biologically realistic system. We investigate the dependence of learning success on entrainment time, system size and presence of noise. Possible applications include learning of motor sequences, recognition and prediction of temporal sensory information in the visual as well as the auditory system and late processing in the olfactory system of insects.Comment: 13 pages, 14 figures, completely revised and augmented versio

    ilastik: interactive machine learning for (bio)image analysis

    Get PDF
    We present ilastik, an easy-to-use interactive tool that brings machine-learning-based (bio)image analysis to end users without substantial computational expertise. It contains pre-defined workflows for image segmentation, object classification, counting and tracking. Users adapt the workflows to the problem at hand by interactively providing sparse training annotations for a nonlinear classifier. ilastik can process data in up to five dimensions (3D, time and number of channels). Its computational back end runs operations on-demand wherever possible, allowing for interactive prediction on data larger than RAM. Once the classifiers are trained, ilastik workflows can be applied to new data from the command line without further user interaction. We describe all ilastik workflows in detail, including three case studies and a discussion on the expected performance

    Corticolimbic Expression of TRPC4 and TRPC5 Channels in the Rodent Brain

    Get PDF
    The canonical transient receptor potential (TRPC) channels are a family of non-selective cation channels that are activated by increases in intracellular Ca2+ and Gq/phospholipase C-coupled receptors. We used quantitative real-time PCR, in situ hybridization, immunoblots and patch-clamp recording from several brain regions to examine the expression of the predominant TRPC channels in the rodent brain. Quantitative real-time PCR of the seven TRPC channels in the rodent brain revealed that TRPC4 and TRPC5 channels were the predominant TRPC subtypes in the adult rat brain. In situ hybridization histochemistry and immunoblotting further resolved a dense corticolimbic expression of the TRPC4 and TRPC5 channels. Total protein expression of HIP TRPC4 and 5 proteins increased throughout development and peaked late in adulthood (6–9 weeks). In adults, TRPC4 expression was high throughout the frontal cortex, lateral septum (LS), pyramidal cell layer of the hippocampus (HIP), dentate gyrus (DG), and ventral subiculum (vSUB). TRPC5 was highly expressed in the frontal cortex, pyramidal cell layer of the HIP, DG, and hypothalamus. Detailed examination of frontal cortical layer mRNA expression indicated TRPC4 mRNA is distributed throughout layers 2–6 of the prefrontal cortex (PFC), motor cortex (MCx), and somatosensory cortex (SCx). TRPC5 mRNA expression was concentrated specifically in the deep layers 5/6 and superficial layers 2/3 of the PFC and anterior cingulate. Patch-clamp recording indicated a strong metabotropic glutamate-activated cation current-mediated depolarization that was dependent on intracellular Ca2+and inhibited by protein kinase C in brain regions associated with dense TRPC4 or 5 expression and absent in regions lacking TRPC4 and 5 expression. Overall, the dense corticolimbic expression pattern suggests that these Gq/PLC coupled nonselective cation channels may be involved in learning, memory, and goal-directed behaviors

    The trispecific DARPin ensovibep inhibits diverse SARS-CoV-2 variants

    Get PDF
    The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with potential resistance to existing drugs emphasizes the need for new therapeutic modalities with broad variant activity. Here we show that ensovibep, a trispecific DARPin (designed ankyrin repeat protein) clinical candidate, can engage the three units of the spike protein trimer of SARS-CoV-2 and inhibit ACE2 binding with high potency, as revealed by cryo-electron microscopy analysis. The cooperative binding together with the complementarity of the three DARPin modules enable ensovibep to inhibit frequent SARS-CoV-2 variants, including Omicron sublineages BA.1 and BA.2. In Roborovski dwarf hamsters infected with SARS-CoV-2, ensovibep reduced fatality similarly to a standard-of-care monoclonal antibody (mAb) cocktail. When used as a single agent in viral passaging experiments in vitro, ensovibep reduced the emergence of escape mutations in a similar fashion to the same mAb cocktail. These results support further clinical evaluation of ensovibep as a broad variant alternative to existing targeted therapies for Coronavirus Disease 2019 (COVID-19)

    The trispecific DARPin ensovibep inhibits diverse SARS-CoV-2 variants

    Get PDF
    The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with potential resistance to existing drugs emphasizes the need for new therapeutic modalities with broad variant activity. Here we show that ensovibep, a trispecific DARPin (designed ankyrin repeat protein) clinical candidate, can engage the three units of the spike protein trimer of SARS-CoV-2 and inhibit ACE2 binding with high potency, as revealed by cryo-electron microscopy analysis. The cooperative binding together with the complementarity of the three DARPin modules enable ensovibep to inhibit frequent SARS-CoV-2 variants, including Omicron sublineages BA.1 and BA.2. In Roborovski dwarf hamsters infected with SARS-CoV-2, ensovibep reduced fatality similarly to a standard-of-care monoclonal antibody (mAb) cocktail. When used as a single agent in viral passaging experiments in vitro, ensovibep reduced the emergence of escape mutations in a similar fashion to the same mAb cocktail. These results support further clinical evaluation of ensovibep as a broad variant alternative to existing targeted therapies for Coronavirus Disease 2019 (COVID-19)

    ViNNPruner: Visual Interactive Pruning for Deep Learning

    Full text link
    Neural networks grow vastly in size to tackle more sophisticated tasks. In many cases, such large networks are not deployable on particular hardware and need to be reduced in size. Pruning techniques help to shrink deep neural networks to smaller sizes by only decreasing their performance as little as possible. However, such pruning algorithms are often hard to understand by applying them and do not include domain knowledge which can potentially be bad for user goals. We propose ViNNPruner, a visual interactive pruning application that implements state-of-the-art pruning algorithms and the option for users to do manual pruning based on their knowledge. We show how the application facilitates gaining insights into automatic pruning algorithms and semi-automatically pruning oversized networks to make them more efficient using interactive visualizations.Comment: MLVis Short Paper; 4 pages, 1 page references, 3 figure

    Active Structured Learning for Cell Tracking: Algorithm, Framework, and Usability

    No full text
    • 

    corecore