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Abstract: Vehicle-to-everything (V2X) communication is seen as one of the main enabling technolo-
gies for automated vehicles. Collective perception is especially promising, as it allows connected
traffic participants to “see through the eyes of others” by sharing sensor-detected objects via V2X com-
munication. Its benefit is typically assessed in terms of the increased object update rate, redundancy,
and awareness. To determine the safety improvement thanks to collective perception, the authors
introduce new metrics, which quantify the environmental risk awareness of the traffic participants.
The performance of the V2X service is then analyzed with the help of the test platform TEPLITS, using
real traffic traces from German highways, amounting to over 100 h of total driving time. The results in
the considered scenarios clearly show that collective perception not only contributes to the accuracy
and integrity of the vehicles’ environmental perception, but also that a V2X market penetration
of at least 25% is necessary to increase traffic safety from a “risk of serious traffic accidents” to a
“residual hypothetical risk of collisions without minor injuries” for traffic participants equipped with
non-redundant 360◦ sensor systems. These results support the ongoing worldwide standardization
efforts of the collective perception service.

Keywords: collective perception; cooperative perception; V2X communication; environmental
perception

1. Introduction

One of the main challenges towards highly automated driving is the comprehensive
environmental perception of vehicles. Vehicles with a certain degree of driving automation
require sufficient knowledge concerning their surroundings to perform safe and comfort-
able automated maneuvers. State-of-the-art sensor systems, being restricted to line-of-sight
detections, often fall short when meeting the strict functional requirements imposed by
automated driving applications. V2X communication has emerged as a promising technol-
ogy to mitigate this lack, allowing traffic participants to share all kinds of information to
improve their environmental perception and strengthen their decision-making basis [1].

Examples of V2X applications are cooperative awareness and collective (or coopera-
tive) perception, allowing vehicles to share data about their state and detected objects in the
surroundings, respectively. While cooperative awareness has already been standardized,
collective perception is in the final stages of standardization in Europe [2] and the US [3].

Sensors 2021, 21, 159. https://doi.org/10.3390/s21010159 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6889-4878
https://orcid.org/0000-0002-1520-2399
https://doi.org/10.3390/s21010159
https://doi.org/10.3390/s21010159
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21010159
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/1/159?type=check_update&version=4


Sensors 2021, 21, 159 2 of 23

Collective perception gives traffic participants the possibility to exchange information
about objects in their Local Environmental Models (LEMs). The LEM manages object tracks
provided by the traffic participants’ object detection sensors, initiating new tracks, merging
duplicates and deleting tracks that have not been updated for a given time. Information
received using V2X communication is fused into the so-called Global Environmental Model
(GEM), which is managed separately from the LEM. The main reasons to maintain two
environmental models are (i) to avoid feedback effects by retransmission of received objects,
and (ii) to have a fallback system in case the GEM is altered by erroneous or malicious data.
The GEM has two main benefits over the LEM: (i) it may contain a larger number of object
tracks, e.g., objects which are not detected by sensors because they are located outside the
sensor field-of-view but are received via V2X communication, (ii) its object tracks may have
a higher data accuracy, e.g., in case that they are measured both via sensor detections and
V2X communication, in which case both measurements are fused in order to improve their
precision, and (iii) the trust of the managed data is increased due to the higher number of
sources.

Currently, two wireless technologies have risen as possible enablers of direct V2X
communications. The first one is the Wi-Fi-based IEEE 802.11p standard, also known as
Dedicated Short-Range Communication (DSRC) in the US and ITS-G5 in Europe. IEEE
802.11p is mature and ready for deployment [4]. The second cellular-based technology,
known as C-V2X, has recently been proposed by the 3rd Generation Partnership Project
(3GPP) as an alternative to enable direct communication among vehicles using the side link
or PC5 interface [5]. The standard features two operation modes: the network-controlled
mode 3 and the autonomous mode 4. Both technologies were designed to operate in the
5.9 GHz frequency band, targeting use cases for driver information and warning. A final
decision on which technology should shape the future of V2X communication has not been
taken to date.

Furthermore, two new V2X communication technologies with enhanced performance
are currently in development. On the one hand, IEEE 802.11bd represents an evolution
of IEEE 802.11p, which introduces more advanced PHY and MAC techniques, intending
to increase the MAC throughput and communication range of IEEE 802.11p, as well as
to provide a form of vehicle positioning through V2X communications. Moreover, IEEE
802.11bd is designed to be interoperable and backward compatible with IEEE 802.11p,
while guaranteeing their coexistence and fair channel access opportunities. On the other
hand, 5G New Radio (NR) V2X is the successor of C-V2X, including modifications in its
radio resource management mechanism and new addressing methods such as unicast and
multicast.

In our previous work, we developed analytical models to evaluate the performance
of the collective perception service in IEEE 802.11p [6] and C-V2C mode 4 [7] networks
in terms of its impact on the traffic participant’s gained environmental perception. This
paper follows a similar approach to analyze the benefit of collective perception based on
simulation. The main contributions of this work are threefold: (i) we present a short survey
of network- and perception-related evaluation metrics applied to collective perception in
the literature, (ii) we define new metrics that quantify the quality of a vehicle environmental
model from a more safety-oriented perspective, and (iii) we present simulation results that
show the improvement in the vehicle environmental model due to collective perception
based on the presented network-, perception-, and safety-related metrics.

2. Collective Perception

The environmental model of an automated vehicle can be enhanced by the V2X
applications of cooperative awareness and collective perception. Cooperative awareness
enables vehicles to transmit data about their state via V2X communication, such as their
current position, speed, and heading (see Figure 1 vehicles 1 and 3). This service has
been standardized worldwide, e.g., with the Cooperative Awareness Message (CAM [8])
in Europe and the Basic Safety Message (BSM [9]) in the US. All V2X-equipped vehicles
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transmit these messages continuously with a variable frequency between 1 and 10 Hz,
depending on the variation of their dynamic state (i.e., current heading, position, and
speed) and the measured channel load.

Collective perception [10] allows stations (traffic participants and infrastructure) to
inform connected stations of objects (such as pedestrians, obstacles, and other vehicles)
detected by their object-tracking sensors (see vehicle 1 in Figure 1). This enables receiving
vehicles to extend their environmental model beyond their own sensors’ range. The
object data are exchanged through Collective Perception Messages (CPM), currently in
standardization by the ETSI [2] to ensure its interoperability among all equipped vehicles.

Figure 1. Example of detected vehicles with collective perception. Vehicles 1 and 3 data concerning
their state in Cooperative Awareness Messages, while vehicle 1 also transmits vehicle 2′s data in
Collective Perception Messages. The ego vehicle can then perceive all other vehicles (also including
non-V2X equipped vehicles) [6].

Figure 2 shows the basic structure of a CPM [2], which consists of an ITS protocol
data unit header (common to all standardized messages by ETSI) and the actual CPM. The
station data and the CPM Management container provide information about the sending
station, such as its position and heading. The sensor information container includes details
about the on-board object-detection sensors in the sending station, such as their number,
range, and aperture angles. The perceived objects’ container is a list of the relevant objects
sensed by the sending station, including their relative position and speed, dimensions,
and other data. Finally, other containers, such as the free space addendum, contain free
space areas detected by the transmitter whenever they cannot be computed by a potential
receiver based on the remaining containers.

Figure 2. Data structure of a collective perception message [2].

Another important aspect is the transmission rate of CPMs. Since the frequency band
dedicated to V2X communication is limited, it is important to appropriately adapt the
generation rate and the included objects in the CPMs. The adaption of the generation
rate aims at achieving a good trade-off between the improvement of the environmental
model and the additional channel load, thereby preventing channel congestion leading to a
decreased performance of V2X communication [10].
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The CPM generation rules currently discussed at ETSI are based on the detected
objects’ dynamic properties [11,12]. If the object’s dynamic state has changed in a way that
would trigger the generation of a CAM by this object, it is then included in the next CPM.
Highly dynamic objects are therefore included more often in transmitted CPMs than slow
or static objects. The sensor information container is included in the CPM with a fixed
frequency of 1 Hz.

Concept and functional benefit of collective perception have been studied with the
Artery simulation framework [10,13,14], based on the network simulator OMNeT++. These
works found that the vehicle awareness ratio, i.e., how many vehicles it can see around
itself, increases significantly when vehicles exchange CPMs in addition to CAMs. Decen-
tralized Congestion Control (DCC) has been found to reduce the vehicle awareness ratio,
especially when CAM and CPM are transmitted in the same channel with an increasing
V2X-equipment rate [13,14]. However, the impact of the vehicle awareness ratio on the
vehicle capability to correctly assess its collision risk based on its environmental model
has not been assessed to date. Collective perception is investigated in several European
collaborative research projects, such as TransAID [15], AutoNet2030 [16], IMAGinE [17]
and MAVEN [18].

3. Testing Environment

Within this work, the TEPLITS platform [19,20] is used to investigate collective percep-
tion. TEPLITS was developed for the design, implementation, and testing of new intelligent
transportation systems and components. It consists of several modules: the core is the
robotics middleware robot operating system (ROS) that orchestrates the interplay of the
different components. The platform’s main aspects are presented below, starting with the
traffic and vehicle dynamics simulation in Section 3.1 and proceeding with the vehicle
sensors in Section 3.2, before finally, the vehicle perception and control is described in
Section 3.3. For a more detailed description of TEPLITS, the reader is kindly forwarded
to [19,20]. A schematic overview of the main components is offered in Figure 3.

Figure 3. Overview of the main components of the simulation and testing platform TEPLITS [19,20].

3.1. Traffic and Vehicle Dynamics

The accurate modeling of the traffic both on a microscopic and a macroscopic level
is essential for analyzing intelligent transportation systems. TEPLITS offers five distinct
options for the generation of the trajectories: (i) the online evaluation with real test ve-
hicles [17], (ii) inputting prerecorded object tracks, e.g., from the open source highD [21]
and the KoPER datasets [22], (iii) real-track-based data extended, e.g., by Bayesian net-
works [23], (iv) vehicle tracks generated by the vehicle dynamics simulator CarMaker
developed by IPG-Automotive, and (v) artificially generated tracks, such as the spider
web scenario [2]. Each of the options has its advantages and disadvantages compared to
the others. For this reason, a different option or a combination of these may be chosen
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depending on the respective investigation needs. For instance, if a more theoretical analysis
is targeted, an artificial scenario with precise speeds and routes may be chosen. For a
realistic, large-scale scenario investigation, recorded vehicle tracks are preferable. In cases
where rarely occurring critical situations are of interest, the tracks may be generated using,
e.g., Bayesian networks to multiply these situations. For tests where control of the traffic
participants is required, they may be driven by CarMaker, which was extended by a ROS
interface in the scope of the public funded project IMAGinE [17]. Further, a combination of
real or Bayesian network-generated vehicle tracks with CarMaker is also possible. Should
the systems be ready for testing in real test vehicles, a transfer of the modules to the vehicles
is made possible due to the common interface of CarMaker and the vehicles.

3.2. Vehicle Sensors

Traffic participants in TEPLITS can be equipped with several sensors. These can be
divided into three classes:

• Positioning sensors: The main technologies to estimate the ego-position of a traffic
participant are satellite navigation, odometry, IMUs, and SLAM. While IMU and
odometry are implemented in a simple way in TEPLITS, the state-of-the-art absolute
positioning sensor, that is GNSS, is modeled in great detail. For this purpose, the
GNSS signal generator SPIRENT GSS7000 developed by Spirent Communications
is used. It allows to control a wide range of parameters, such as tropospheric and
ionospheric errors, satellite clock and ephemeris errors, obscuration and multipath,
receiver antenna characteristics, and RF interference for any given point in time and
space. It further allows multi-constellation operation, including GPS, GLONASS,
Beidou, and Galileo signals. SLAM has not been implemented in TEPLITS thus far.

• Object tracking sensors: Object tracking sensors, such as radars, LIDARs, and cameras
are implemented in CarMaker and the data are outputted over the integrated ROS
interfaces. For partially automated vehicles, the human driver must also be considered
as an additional or even the primary sensor, releasing driving functions, such as the
merging onto a highway. For this reason, the human driver can also be modeled as
a sensor in CarMaker [19]. However, it must be noted that the data are processed
separately, and not merged into the vehicle’s environmental model. All these object-
tracking sensors have also been implemented in ROS based on Bosch internal sensor
models for the CarMaker-independent operation of TEPLITS.

• V2X communication: TEPLITS offers two different ways to model the V2X commu-
nication: (i) a full stack implementation, and (ii) the application of analytical models
developed by the Universidad Miguel Hernandez in Elche, Spain. Generally, the latter
is preferable if the focus does not lie on an in-depth analysis of the communication
performance, as the full stack software implementation, combined with all the other
simulation components, tends to considerably slow down the simulation. The analyti-
cal models for 802.11p [24] and C-V2X autonomous mode [25] have been validated
with state-of-the-art network simulators and are suitable for most applications.

3.3. Vehicle Perception and Control

The information gathered by the vehicle sensors is subsequently processed with
the open source robotics middleware platform ROS. The objects are extracted from the
measurements, associated and fused into the LEM. The track manager entity is responsible
for updating the existing track, creating newly detected ones, and deleting outdated tracked
objects. A situation analysis will assess the current traffic situation based on the sensor data
and possible further information, e.g., from map services. V2X messages are generated
based on these two modules and handed over to the communication control unit for
transmission. Received V2X messages are processed and utilized for the generation of
GEM and V2X-enhanced situation analysis. Further V2X services, such as collaborative
positioning, have also been implemented in TEPLITS and support the generation of a
precise decision basis, as it is the GEM and the situation analysis. They form the basis for the
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maneuver planning of the vehicle. The functions implemented range from an intersection
assistant to platooning and from a cooperative Adaptive Cruise Control (c-ACC) to a
highway on-ramping assistant, depending on the vehicle’s level of automation. Finally, if
CarMaker or a real test vehicle is connected, the maneuver can be executed according to
the control commands generated in the maneuver execution module.

4. Evaluation Metrics

In order to quantify the benefit of collective perception several metrics have been
proposed in the past. Generally, these can be divided into three groups: (i) those assessing
the generated load on the V2X communication network, (ii) those evaluating the benefit of
the service in terms of enhanced environmental perception, and (iii) those quantifying the
improvements in terms of safety, efficiency, and comfort. Some of the metrics belonging
to each of these groups are discussed in the following, citing related work making use of
them to evaluate the performance of collective performance.

4.1. Network-Related Metrics

Some of the metrics addressing the “costs” of the collective perception service, namely
the additionally generated load on the wireless communication channel, are message size,
channel busy ratio (CBR), and packet delivery ratio (PDR). As opposed to the metrics
quantifying the benefit of collective perception, these metrics are common to all V2X
services and thus also used, e.g., to evaluate the performance of CAMs [26] and maneuver
coordination messages (MCMs) [27]. As they are well known to the collective perception
community, they are described only briefly.

4.1.1. Message Size and Frequency

Two of most straightforward metrics concerning channel resources’ demand by a V2X
service are size and frequency of the disseminated messages. New CPM formats have
been proposed, effectively reducing the message size, and only slightly compromising the
benefit of the service [28,29]. In the same way, other works have introduced new message
dissemination rules with positive effects on the message’s transmission frequency and the
number of shared objects. Most of these dissemination rules use both message size and
frequency to evaluate the effect of the collective perception service on the communication
channel [11,12,30–35].

4.1.2. Channel Busy Ratio (CBR)

The CBR is a common metric to evaluate the load caused by communicating V2X
stations and represents the fraction of time the channel is perceived as busy. As it de-
pends on the previously mentioned message sizes and frequencies, it is a much more
direct measure of the “costs” of the collective perception service. The CBR has been
employed by several groups to compare CPM dissemination rules in terms of channel
utilization [10,11,14,32,34,36].

4.1.3. Packet Delivery Ratio (PDR)

A third state-of-the-art metric computing the effect of the message dissemination on
the communication channel is the PDR. It represents the probability of receiving a certain
packet, typically in dependence of the CBR and the distance between the transmitting and
receiving station. The better the PDR is for a certain set of dissemination rules, the lower
the negative impact on the communication channel. This metric and its reciprocal, the
packet error rate, have been used among others in [12,32–38].

4.2. Perception-Related Metrics

In contrast to the above-described communication metrics quantifying the “costs”
of the collective perception service, the environmental perception metrics measure its
“benefit”. While sometimes they are used in combination with communication metrics,
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they may as well be employed in a stand-alone fashion, e.g., to optimize the benefit of
the service with given channel constraints (single vs. multi-channel, dedicated vs. shared
channel, etc.).

4.2.1. Environmental Awareness Ratio (EAR)

Several metrics describing the fraction of environmental elements known to a station
(e.g., traffic participant or infrastructure) within a determined region in space and time are
collectively referred to as environmental awareness ratio (EAR). The most common form
of the EAR is the object awareness ratio (OAR), describing the ratio of objects (generally
other traffic participants) perceived by a station. It is typically used for a certain relevant
region around the vehicle and for the present time [6,7,10–12,14,30–33,35,39]. In addition,
relevant areas further away from the station in question, such as the on-ramping region on
a highway, and times in the future, such as the time the on-ramping maneuver is carried
out, have been used [19]. In contrast to the OAR, the space awareness ratio (SAR) gives the
fraction of the space known to the station within the defined relevance region at a given
time. The mentioned on-ramping scenario is a good example where the SAR may be more
meaningful than the OAR, since the vehicle is interested in finding a suitable gap between
the vehicles in the highway, and only knowing the position of some of the vehicles would
not be sufficient. A SAR-like metric is made use of in [19,40,41].

4.2.2. Detected Object Redundancy (DOR), Update Period, and Age of Information (AOI)

Besides the ratio of relevant objects perceived by the station, the redundancy with
which these objects are perceived is of interest. Apart from the message generation rules,
the DOR is typically caused by a higher number of independent sources, which contributes
to the integrity of the data managed in the GEM. A higher DOR generally decreases the
GEM update period, i.e., the time between consecutively received measurements of an
object in the GEM. The information freshness of the object can be further expressed by
its AOI. It is composed of all arising latencies, the major ones being the just introduced
update period, the sensor update rate, processing times and further communication de-
lays [7]. Several papers have made use of the DOR [7,12,30,31,40–42], the update rate or
period [6,7,11,12,32,35], the distance covered by the object between updates [6,7,32], and
the AOI [6,7].

4.2.3. Object Tracking Accuracy (OTA)

While EAR and DOR already describe the probability of an object being perceived by
a station and the expected number of measurements, detection and tracking accuracies
describe how precisely the object state is known. This may be expressed by the deviation of
its estimated position with respect to ground truth (e.g., horizontal positioning accuracy),
by the errors concerning momenta of higher order, or by the respective covariance matrices.
The metric requires more sophisticated processing of the data in the investigated station,
i.e., sensor data fusion algorithms, which explains its significantly less frequent use to
evaluate collective perception [28,29,37] as compared to, e.g., collaborative positioning [43].
An interesting variation of the OTA is the information entropy, used in [37] to select objects
for transmission based on their information value.

4.3. Safety, Efficiency, and Comfort Metrics

These metrics are placed at a somewhat higher aggregation level and measure the
impact of the vehicle environmental perception on driving safety, efficiency, and comfort.
Thus, they are more suitable to describe the overall performance of the collective percep-
tion service. Due to the lack of appropriate safety metrics in the literature concerning
collective perception, the new environmental risk awareness (ERA) metric is presented
in the following and the comprehensive safety metric (CSM) [44] is adapted to suit the
evaluation of collective perception.
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4.3.1. Environmental Risk Awareness (ERA)

Given the lack of a simple risk assessment metric for CP, we introduce a new metric
that aims at estimating how aware a station is of the risk the current traffic situation
bears for it. For this purpose, we propose to compare the perceived risk with the real
risk of the environment. The real risk of a situation can be approximated by computing
the instantaneous approaching time ti of each relevant traffic object i towards the station.
Traffic objects with which a collision is not possible (e.g., driving in the opposite direction of
a motorway) are naturally not considered. The inverse of ti is referred to as instantaneous
approaching rate and corresponds to the solution of the motion equation:

dt0 +
.
dt0 ti +

( ..
dt0 +

..
dmax

)
·t2

i

2
= 0 (1)

where dt0 ,
.
dt0

..
dt0 are the distance, relative speed, and acceleration of the station and the

object in the evaluation timestamp t0. The additional parameter
..
dmax corresponds to the

maximal change in the object’s relative dynamics, depending on its current speed and the
maximum acceleration, deceleration, and steering angle of the object. The risk posed by this
object is then proportional to the approaching rate and the severity of a possible collision
µi (e.g., a collision with an object of vastly different dimensions or mass is weighted higher).
Thus, the overall risk for the station can be computed from the contributions of all relevant
objects with positive approaching times:

ERA0 = ∑
i; ti>0

µi
ti

(2)

Similarly, the perceived risk can be computed from the instantaneous approaching
rate and the corresponding uncertainties for each dimension of the state vector:

ERAp = ∑
i; ti>0

µi
ti + u(ti)

(3)

where u(t) corresponds to the uncertainty of the approaching time and can be computed
as:

u(ti) =

√
⇀
∇ti

T ·Vi·
⇀
∇ti (4)

with Vi being the covariance matrix for the state of object i. Instead of using a 95%
confidence interval, as specified for the CPM [2], higher order protection levels (e.g.,
99.99%) may be evaluated depending on the requirements. The station’s environmental
risk awareness can now be computed as the perceived risk divided by the real risk:

ERA =
ERAp

ERA0
(5)

The value of ERA ranges from 0 (no perceived risk, leading to poor risk awareness)
to 1 (perceived risk equal to real risk, resulting in a perfect risk awareness). Thus, the
ERA allows to aggregate all relevant components of the environmental model into one
physically meaningful metric, from the EAR to the accuracies of the tracked object states.
Furthermore, it weighs objects according to their relevance for the analyzed station, making
it a very integer metric.

4.3.2. Comprehensive Safety Metric (CSM)

Ensuring safety is the key component to make sure that autonomous vehicles are
ready for their market introduction. For measuring safety, Volk et al. [44] presented a new
safety metric that can evaluate the safety of a perception system considering real-time
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aspects, object relevance, and the possible consequences of undetected objects leading to a
potential collision.

Figure 4 gives an overview of the CSM. For its computation tracking and detection
quality are evaluated separately, focusing on three main aspects: detection quality, object
relevance, and detection times. Closer objects are more safety-relevant than distant ones.
Therefore, CSM requires close objects to be detected more accurately. This is achieved by
refining the original Intersection over Union (IoU) score with verification factor fv as de-
picted in Figure 4. This refined IoU is used to calculate the CLEAR metrics Multiple Object
Detection Accuracy (MODA), Multiple Object Detection Precision (MODP), Multiple Object
Tracking Precision (MOTP), and Multiple Object Tracking Accuracy (MOTA) [45] leading to
a distance-based detection quality assessment. Detection and tracking evaluation yield an
interim safety result: detection & tracking safety. These are defined as the mean of accuracy
and precision scores for each tracking and detection. The interim must be weighted in
dependence of the respective use case and are considered to be equally important for the
evaluation in this work as proposed by [44]. To incorporate the object’s relevance, CSM
uses the Responsibility-Sensitive Safety (RSS) model [46] to define minimal lateral and
longitudinal safety distances. If objects are undetected and fall below the defined minimal
safety distances, a potential collision will be evaluated. According to the object classes, the
severity of a collision is calculated, and the collision factor fc reduces the final safety score S.
To incorporate real-time aspects the detection time factor ft is introduced. Longer detection
times result in less time for an autonomous system to prevent potential collisions and
therefore, reduce the final safety (see also time to plan (TTP) in subsequent sub-subsection).
The final safety metric score S defined by the CSM as the weighted interim safety result
multiplied with the factors fc and ft. Overall, it allows for a more precise evaluation
compared to standard metrics like average precision as additional safety-relevant factors
such as detection times and object relevance are considered.

Figure 4. Schematic representation of the Comprehensive Safety Metric as introduced by Volk et al.

To apply the metric to collective perception, it had to be slightly modified. Compared
to the original CSM [44], undetected objects will be considered with an intersection-over-
union score of zero in the MODP. This way true positive detections still get handled
the same way, but undetected objects result in an even stricter rating, ensuring that the
inclusion of new V2X objects into the GEM improves the safety even if the detection
accuracy is low.

4.3.3. Time to Plan (TTP)

Of the three presented metrics within this subsection, the TTP is the most concrete in
terms of its functional benefit as it is located at the application layer instead of the facility
layer of the V2X protocol stack. In general, it is a measure of the available time for the
station to plan a specific maneuver. In other words, the time between the moment at which
the station has sufficient information to plan a maneuver until the maneuver is carried
out. Günther et al. investigate the time in advance a vehicle learns about an object on
the road ahead of it [1]. In another example, Schiegg et al. compute when the vehicle has
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received sufficient information to determine and head for a gap on the highway [19]. Not
surprisingly, together with the change in speed and acceleration, it is the most relevant
metric to evaluate the benefits of the MCM in terms of traffic efficiency [47].

5. Results and Discussion

The benefit of collective perception is evaluated based on a selection of the metrics
presented in the previous chapter. Therefore, a highway scenario was chosen. The two main
reasons are (i) the simplicity to describe the scenario, and (ii) the availability of publicly
accessible real-world datasets, facilitating comparability and reproducibility. Section 5.1
characterizes the investigated scenarios and simulation parameters before evaluating
collective perception in Sections 5.2–5.4, based on each of the metric categories introduced
in the previous chapter.

5.1. Simulation Parameters

The following subsection presents the parameters describing the scenario (Section 5.1.1),
the vehicles and their sensors (Section 5.1.2), and the V2X communication (Section 5.1.3).

5.1.1. Scenario

The performance of collective perception strongly depends on the traffic density,
the average speed, and the number of lanes [42]. For this reason, two different highway
segments with quite different traffic densities were selected in the region of Cologne (see
Figure 5 in [21]). The vehicle traces were obtained from the highD dataset [21]. To smoothen
the results, up to 10 runs were carried out for the intermediate V2X penetration rates (in
this article the terms “market penetration”, “market share” and “V2X equipment rate” are
used interchangeably). An overall characterization of both scenarios is given in Table 1.
The corresponding vehicle densities and speeds are shown in more detail in Figure 5,
differentiating between trucks and vehicles.

Table 1. Investigated highway scenarios with low (A) and high (B) traffic density.

Scenario A B

Speed limit [km/h] - 120
Total distance driven [m] 342,235 1,120,346

Total time driven [s] 10,298 80,676
Number of vehicles (trucks) 856 (168) 2850 (389)

Number of lanes 3↓↑3 3↓↑3 
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Figure 5. Traffic characterization in terms of: (a+b) vehicle density and (c+d) speed distribution for (a+c) the low and (b+d)
the high traffic density scenario with their respective quartiles (dotted lines). Traffic speed and density have a high impact
on the performance of collective perception.
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5.1.2. Vehicles and Their Perception

The high quality of the highD dataset allows to use real vehicle traces and dimensions,
with an accuracy of <10 cm (see Figure 6a). For simplicity, the vehicles are all equally
equipped with six cameras as depicted in Figure 6b. The camera system has an effective
360◦ field-of-view and a tracking range of 85 m (shaded green area). Both detection
probability and detection accuracy are inversely proportional to the distance of the tracked
object and directly proportional to the fraction of its visible cross section. The ego vehicle’s
sensor measurements are illustrated in pink. It is clearly visible how the pink bounding-
boxes grow with increasing distance from the ego vehicle and some vehicles are not even
detected due to an obstructed line-of-sight. It can further be seen that the GEM (brown
boxes) reaches far beyond the field-of-view of the ego vehicle’s sensor system includes the
shadowed vehicles, and has a higher precision than the stand-alone measurements, clearly
demonstrating the benefit of collective perception with the shown 25% market penetration.
Both LEM and GEM management facility track objects after their last detection, predicting
their state until a given accuracy threshold is exceeded. For the purposes of this work,
the threshold is set to lane accuracy as required by the association algorithms in dense
scenarios.
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Figure 6. High-density highway segment of scenario B: (a) Ground truth positions of the vehicles as contained in the highD
dataset; (b) Visualization of the environmental perception of a vehicle (red box), showing the sensor measurements (pink
boxes) and the fused global environment model (brown boxes) for a V2X market penetration of 25%. They are superposed
over the ground truth states’ bounding boxes of the surrounding traffic, differentiating between V2X-equipped (blue boxes)
and non-V2X-equipped vehicles (orange boxes).

5.1.3. V2X Communication

For the evaluation, IEEE 802.11p is used with a QPSK modulation and a coding rate
of 0.7. Antenna and average environmental heights, sensing power threshold, background
noise and the transmission power were adopted from the analytical model in [6]. The
transmitted CPMs correspond to the latest state of standardization at the ETSI [2], following
the specified dynamic generation rules. According to practical experience [17] and to foster
reproducibility, all optional data fields are filled. For the purposes of this study, ETSI
DCC [48] and the redundancy mitigation rules proposed in the technical report [2] are
turned off.
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5.2. Effect on the Communication Channel

The following three subsections discuss the generation of the CPM and its effect on
the communication channel. The metrics introduced in Section 4.1 have been analyzed
thoroughly in the cited literature and are thus discussed only briefly in the following.

5.2.1. Message Size and Frequency

Figure 7 shows a region of scenario A (low density) and the corresponding messages
generated on the facility layer of the V2X protocol stack with their respective sizes in bytes.
The already standardized CAMs and Decentralized Environmental Notification Messages
(DENMs [49]) are shown for comparison purposes but they are not considered for the later
evaluation of the collective perception service.
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Figure 7. Message generation of the ETSI stack for the low-density scenario: (a) Vehicles on a highway section; (b)
Corresponding generated messages over time. The temporal extension of the messages is only for visualization purposes.

The CAM is of interest for the analysis of the CPM due to their related generation
rules. The main dissemination parameter on a highway scenario is the vehicle speed. As
can be seen, vehicles driving at higher speeds will have higher CAM generation rates.
Vehicle 808 for instance, driving at a speed of ∼193 km/h, generates CAMs every 100 ms,
while truck 798, driving at ∼84 km/h, generates a CAM at roughly half of that rate. Every
500 ms a low frequency container with supplementary information is added to the CAM,
leading to a significant increase of its size.

While the CAM is generated depending on the transmitting vehicle’s speed, the
CPM includes detected objects depending on their measured speed. Since a CPM is
generated whenever at least one detected object has been selected for transmission, vehicles
disseminate more CPMs than CAMs even at these low traffic densities. Every 1000 ms a
sensor container (see Section 2) is added to the CPM.
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A timeframe was chosen in which, apart from the CAMs and the CPMs, DENMs
are also present. At this moment, the truck (vehicle 798) detects a potentially hazardous
situation and transmits a DENM to warn the surrounding vehicles. The DENM is received
and immediately retransmitted by vehicle 808. The new DENM is, in turn, received by
vehicles 807 and 809, but only retransmitted by the latter, as this vehicle is located further
away from the last transmitter (vehicle 808). The DENM dissemination rules allow for
further DENMs later in time to warn about the persistence of the event causing them. In
this case the DENM is retransmitted by the truck after 500 ms.

Overall, it is evident that the CPM demands significantly more resources compared to
CAMs or DENMs, even at this low traffic density. This increases the relevance of channel-
aware generation rules. Furthermore, it is much less predictable in both size and periodicity,
posing not yet solved problems for the semi-persistent scheduling of C-V2X mode 4 [26].

The high variability of the CPM size is represented in more detail in Figure 8. The
blue bars show the probability distribution of the number of objects included in a CPM for
(a) scenario A and (b) scenario B. The red line shows the cumulative distribution function.
As can be seen, the higher vehicular density also increases the number of detected objects,
incrementing the average number of included objects per CPM from 2.5 to 6.5. Furthermore,
the number of CPMs discarded in lack of perceived objects passing the service’s object
inclusion filters (shown by the green bars) decreases with higher density. These findings are
in good agreement with [42], as the number of objects in line-of-sight increases faster with
rising traffic density than the decrease of their dynamics. However, scenario B is already
close to the limit traffic density (20–40 Veh/km/lane depending on the sensor system’s
range [42]) where occlusion effects by the dense traffic and the falling object inclusion rate
due to the reduced mobility become dominant.
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Figure 8. Probability Density Function (PDF; blue bars) and Cumulative Distribution Function (CDF; red line) of the number
of objects per CPM for (a) the low traffic scenario and (b) the high traffic scenario. Not transmitted CPMs are depicted by
green bars.

5.2.2. Channel Busy Ratio

The combined effect of a high number of transmitting stations and the larger average
message size can be quantified by the channel busy ratio, representing the fraction of time
the channel is perceived as busy by a station, averaged over all V2X-equipped stations.
As shown by Figure 9, the channel load in scenario A is very low and remains within the
unrestricted reactive DCC state according to the standard [48] for most of the time, even
with a full V2X market penetration. Only in rare cases, i.e., a three standard deviation
interval, the channel load induces the first active DCC state. However, since the average
packet duration is Ton ≤ 0.5 ms this translates into a minimum idle time To f f ≥ 100 ms,
thus not affecting the transmission of CPMs, as this corresponds to its minimum generation
period. On the other hand, the considerably higher traffic density of scenario B and the
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larger CPMs message sizes cause significantly higher strains to the communication channel,
ranging from ~50% CBR (ETSI DCC state “active 3”) up to ~75% CBR (ETSI DCC state
“restrictive”), with an average ~65% CBR (ETSI DCC state “restrictive”). Due to the higher
message duration Ton > 0.5 ms the channel access is more restricted, translating into
minimum idle times To f f ≥ 1000 ms for CBRs higher than 60%. Nevertheless, it should be
remembered that the levels are depicted only to show when the DCC states would come
into effect and where deviations from the DCC activated states occur. As it can be seen,
DCC does not play a role also in the high scenario B up to a V2X equipment rate of 25%.
Thus, if activated, the reactive DCC would only throttle the CPM transmission for V2X
penetration rates higher than 25% in scenario B.
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3-standard deviation intervals. The figure further shows the DCC levels of the 5-state ETSI DCC for message durations (a)
Ton ≤ 0.5 ms and (b) Ton > 0.5 ms [48].

5.3. Environmental Perception

Having analyzed the extent to which the communication channel is strained by
the collective perception service, we now investigate its benefit in terms of enhanced
environmental perception.

5.3.1. Environmental Awareness Ratio (EAR)

The most extensively investigated environmental perception metric is the EAR. As
described in Section 4.2.1, the EAR typically refers to the share of objects known to a station.
It may as well represent the fraction, e.g., of known space occupation in a specific region of
interest. For the purposes of this investigation, we stick to the former, the Object Awareness
Ratio.

The benefit of collective perception in terms of increased environmental perception
becomes clear by having a look at Figure 10. While the on-board sensors’ perception is
limited in range as can be seen in Figure 10a, where only sporadic occlusion of the sensors’
field of views occurs, the occlusion becomes a major hurdle in denser traffic scenarios [42].
The median EAR for the sensor-only scenario drops from 78% in Figure 10a to 60% in
Figure 10b, effectively doubling the proportion of untracked vehicles compared to scenario
A. Higher V2X equipment rates, however, lead to an increasing environmental awareness
of the traffic participants in both scenarios. Equally expectable is the fact that full market
penetrations allow for a perfect environmental awareness within the defined region of
interest. Even though some packets in scenario B may be lost due to the high channel load
addressed in the previous subsection, the track manager of the environmental model of
the vehicles maintains the tracked objects for a certain time by predicting their new states,
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until the accuracy threshold is reached (see Section 5.1.2). This makes the environmental
perception more robust to packet losses as, e.g., compared to [6].
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However, when comparing the evolution of the EAR in both scenarios, the higher
traffic density presents a much earlier benefit from rising V2X rates as compared to the
low traffic scenario. This can be explained by the number of cooperative vehicles within
the communication range (see traffic densities in Figure 5). While a 3% market share
translates into an average of less than one collaboration partner in the low-density scenario,
it corresponds to almost four in scenario B. Thus, an important conclusion is that the
performance of collective perception in terms of EAR depends less on the fraction of
equipped stations, as it would be the case of cooperative awareness, than on their number.

5.3.2. Detected Object Redundancy (DOR)

The second investigated metric describing the benefit of collective perception is the
DOR introduced in Section 4.2.2. Figure 11a,b show the average received updates per
second per object for objects within the area of relevance. The sources from which the
data are received are arranged on the respective x-axis according to their contribution.
The lines in the figure represent the means and the shaded areas the standard deviation
for the different investigated equipment rates. For example, in scenario B the ego vehicle
would receive an average of 10 updates per second from its own on-board sensors. The
best reporting V2X source would provide another 2–5 updates depending on the V2X
equipment rate. As the sources are sorted in terms of their contribution, the latter gradually
decreases to an almost negligible minimum for the less reliable cooperation partners.

As expected, the detection redundancy can be considerably enhanced by collective
perception in both scenarios. While some of the cooperating stations are close enough to
the object and may include it at high rates, those further away are limited by the reduced
visibility of the object due to the reach of the sensor system and the shadowing caused by
other traffic participants. A second effect reducing the number of updates by a cooperating
station is the quality of the communication. It is responsible for a decreasing number of
received updates with increasing distance between transmitting and receiving station. For
this reason, the bulk of the updates come from 10 and 20 sources in scenario A and B
respectively, and all further sources only contribute sporadic measurements.

The two main advantages of the increased DOR are: (i) the higher update frequency
and thus lower age of information, and (ii) the higher integrity and higher accuracy of the
fused object data due to an increased number of independent sources. While the former
may be increased from 13 over 17, 19 and 25 to 53 Hz for equipment rates of 0, 3, 10,
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25 and 100% in the low-density scenario, the increase is again more pronounced for the
high-density scenario, going from 10 over 13, 19, 29 to 76 Hz for the same equipment
rates. It is noteworthy that the variability of the update rates in the low-density scenario
is considerably higher, due to the lower number of vehicles involved. Further, it should
be noted that the main V2X source is typically, but not always, the transmitting vehicle
itself, sharing information concerning its own state over the transmitting station container
of the CPM. An example is vehicle 807 in Figure 7, generating CPMs with 10 Hz. The main
responsible for this high generation frequency is vehicle 808, driving at almost 200 km/h.
The latter, however, would broadcast the state of 807 at a lower frequency due to its lower
speed. On the other hand, vehicle 807 would also be the most relevant source for vehicle
808 for the same reasons, presenting the somewhat rarer case when the main source is
not the transmitting station itself. The 100% self-inclusion rate is also the reason for the
unproportioned increase of the update period for the 3% equipment rate with respect to
the higher rates.
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Figure 11. Updates per second for (a) the low-density scenario and (b) the high-density scenario, displaying the contribution
of each connected station in dependence of the V2X equipment rate.

The second advantage is the increased reliability of the managed data due to a higher
number of sources. It was found that while for the low-density scenario with a 3% V2X
market share the average number of sources is still lower than one, it quickly increases to
over eight for the full market penetration. With an average of 2.5 additional V2X sources
for each object in the area of relevance, the 25% equipment rate can already ensure some
level of trust. In scenario B this point is reached with only 10% equipment rate, proving
the statement, that collective perception depends more on the number of collaboration
partners than on their relative number.

5.3.3. Object Tracking Accuracy (OTA)

One of the two benefits of the DOR analyzed in the previous sub-subsection was the
higher update rate for tracked objects. While fresh measurements contribute to enhance
the precision of the GEM, highly outdated data lead to a quick degradation of the latter.
For this reason, the most important benefit of a high update rate is the higher tracking
accuracy of the objects in the environment of the station.

Figure 12 shows the horizontal portion of the object tracking accuracy as a function of
the object’s distance from the ego vehicle. The figure shows a rapid deterioration of the
OTA for a vehicle only relying on its own sensor system. This is especially true for the two
peaks located at 80 m and somewhat more than 100 m distance from the ego vehicle. While
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the former is generated by new objects entering the field of view of the sensor system, the
latter corresponds to the objects leaving it. In the time dimension, the trajectory of an object
starts at Peak 1 when it is detected for the first time, from there it approaches the origin
on the x axis until it passes the ego vehicle and then moves away again before it finally
leaves the LEM at Peak 2. Both peaks are blurred due to the objects’ relative speed. When a
vehicle is first detected, it is generally approaching the ego vehicle. In case this approach is
slow, the tracking error will decrease already at far distances. On the other hand, vehicles
approaching at high speeds may enter deeply into the ego vehicle’s perception range before
the necessary number of measurements has been gathered for a good convergence of the
OTA. The contrary is true for an object leaving the sensors’ field of view. The lower its
speed, the longer it will take it to drive away from the ego vehicle, leading to a higher
deterioration of the OTA due to system noise. While the second peak is clearly visible
for the 0% equipment rate, the first peak is attenuated as a result of merged OTAs from
vehicles entering the ego’s field of view and those leaving it.
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Figure 12. Object Tracking Accuracy and their standard deviations for (a) the low traffic scenario and (b) the high traffic
scenario in dependence of the V2X equipment rate and the distance to the ego vehicle.

Despite the amount of displayed data, the benefit of collective perception is clearly
visible: (i) it enhances the positioning accuracy within the vehicle sensors’ field of view, and
(ii) it extends the perception range. While the significantly high performance of collective
perception with equipment rates of 25 and 100% is immediately apparent, this effect is
much less visible for lower V2X market shares. With 3% it even seems to perform worse at
first sight. This can however be explained by the additionally introduced measurement
errors coming from the GNSS positioning accuracy. The received V2X data relative to the
transmitting station need to be transformed into absolute coordinates. In a second step,
the data then have to be transformed back into coordinates relative to the receiving station
to be merged into its global environmental model. Thus, the absolute positioning errors
of both connected stations are added to the measurement errors of the detection. For this
reason, object measurements obtained from collective perception with a certain sensor will
be of a poorer quality than their peers obtained from an identical sensor on the ego vehicle.
It is important to notice, however, that despite its poorer quality, V2X gathered data still
enhance the environmental perception in all cases. The effect that seems to deteriorate
the OTA at low equipment rates deals from the higher environmental perception of the
vehicles. While the OTA of objects already tracked by the ego-sensors can be enhanced by
further V2X measurements, objects not yet tracked by them will be newly incorporated into
the GEM. As the only measurements of these objects come from V2X sources, their OTA
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will be worse than that of objects only tracked by the ego-sensors. In other words, Figure 12
averages over already tracked objects with V2X enhanced OTAs and V2X-only tracked
objects, resulting in the erroneous impression that collective perception may decrease the
OTA of a tracked object. However, as explained, this is obviously not the case.

Further aggregation of the data with respect to the distance between the object and the
ego vehicle leads to the box plots represented in Figure 13. They offer another perspective
of the tracking accuracy in dependence of the V2X equipment rate. As it can be seen, the
OTA first increases in both scenarios with increasing market share, before it falls to much
lower values. This increase of the OTA has its origin precisely in the effect described before.
More objects can be included into the GEM (compare EAR in Section 5.3.1), however,
they possess below average OTA values, increasing the average positioning error. With
increasing numbers of updates coming from additional collaboration partners, the average
positioning error can be reduced, finally falling under the non-collaborative scenario despite
the much higher EAR. The reason for a later convergence of the low-density scenario is
again the lower number of collaboration partners, resulting in a slower increase of the EAR
(Figure 10) and thus translating into a lower weight of the additionally tracked objects.
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5.4. Safety Metrics

The last subsection showed that none of the investigated metrics is sufficient to
describe the benefit of collective perception in a stand-alone fashion. The two metrics
investigated in this subsection aim at merging the EAR, DOR and OTA into a single target
metric.

5.4.1. Environmental Risk Awareness (ERA)

The ERA introduced in Section 4.3.1 represents the extent to which the risk of the
surrounding traffic situation is assessed by a traffic participant within a certain confidence
level. Figure 14 shows the ERA for a 95% confidence range in both investigated scenarios,
corresponding to the confidence interval specified in ETSI’s TR for collective perception [2].

In the stand-alone scenario the vehicles estimate the risk in average 10% lower than
it is. It can further be observed that due to the lower sensor shadowing, the risk is more
accurately determined in scenario A despite the higher vehicle speeds. As expected, the
collective perception-enhanced scenarios outperform the stand-alone benchmark even at
low V2X penetration rates. The ERA profits stronger from low V2X equipment rates with
higher vehicle densities. As the ERA indirectly depends on EAR, DOR and OTA, this
finding is not surprising. With a full V2X market penetration, the risk awareness of the
vehicles is almost perfect. These results strongly encourage the deployment of collective
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perception in future autonomous vehicles, as a highly accurate risk assessment is a strict
requirement for their market introduction. However, it is worth reminding that these
results correspond to a 1-covariance confidence range, following the specification of the
CPM in the TR [2]. For autonomous vehicles, a higher protection level will generally be
of interest. Further, the ERA expresses the risk awareness of a traffic participant and is
not a direct measure of the vehicle safety (treated in the following sub-subsection). The
difference is particularly evident in situations where a reaction is no longer possible. The
vehicle may have a perfect ERA; however, its safety is overly critical. For most cases,
however, a higher ERA implies a better basis for decision-making, having positive effects
on traffic safety, efficiency, and comfort.
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5.4.2. Safety Metric

Finally, both scenarios are investigated in terms of the provided safety. Figure 15
shows the safety resulting from the corresponding environmental perception of the in-
volved traffic participants. In contrast to the complex computation, the safety value
classification provided by [44] allows for a simple interpretation of the results.
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Figure 15. Comprehensive Safety Metric for (a) the low-density scenario and (b) the high-density scenario with the
corresponding safety levels as stated in [44].

According to the classification, the safety in the stand-alone case can be labeled as
“bad” (existing risk for serious violation) in roughly 25%, “good” (low probability of
minor injuries) in roughly another 50% and “very good” (hypothetical collisions without
minor injuries) in the remaining 25% of the cases in scenario A. Only in rare cases it
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can be called “insufficient” (high risk of fatality) or “excellent” (high probability of safe
status). In scenario B, the effect of the lower speed of the vehicles is outweighed by the
poorer environmental perception due to the occlusion of the sensors’ field of view and the
lower inter-vehicle distances. This leads to almost half of the results being either “bad”
or “insufficient”, thus presenting serious risks to the driver and his environment. The
considered sensor equipment would hence be insufficient for a fully autonomous vehicle.
While the safety in the high-density scenario increases rapidly with the V2X market share,
the development is considerably slower for the low-density scenario, due to effects already
discussed. A “very good” safety, with low risk of collisions without fatalities in both
scenarios becomes only possible at V2X equipment rates higher than 25%. These findings
are remarkable, considering the simplicity of the deployed sensor systems.

6. Conclusions

In this paper, collective perception was examined regarding different performance met-
rics. To this end, two highway segments with different traffic densities were investigated
with the help of TEPLITS, a test and simulation environment for intelligent transportation
systems developed in the scope of the public funded project IMAGinE. Real vehicle traces
from the highD dataset recorded with drones on German highways were used to ensure the
significance and validity of the results. The vehicles were equipped with non-redundant
360◦ sensor systems of 85 m range, GNSS receivers and V2X communication according to
ITS-G5. The collective perception performance was analyzed based on three categories
of performance metrics: (i) effect on the communication channel, (ii) environmental per-
ception, and (iii) safety metrics. In agreement with other studies, collective perception
is shown to impact the load of the communication channel, emphasizing the need for
appropriate congestion control mechanisms, such as the redundancy mitigation techniques
mentioned in ETSI’s technical report of collective perception [2]. Further, collective per-
ception considerably enhances the vehicles’ environmental perception, especially in terms
of object awareness, detected object redundancy, and object tracking accuracy. In contrast
to cooperative awareness, the performance of collective perception depends primarily on
the number of connected stations, rather than on the V2X equipment rate. A new metric
was introduced to quantify the extent to which a station can correctly assess the risk of the
current traffic situation. It was found that collective perception greatly enhances the risk
awareness of the connected vehicles in both scenarios, having positive effects on traffic
safety, efficiency, and comfort. Finally, an existing safety metric was adapted to suit its
application to collective perception. The simulation results showed that the safety of a
vehicle equipped only with the mentioned sensor system is exposed to serious risk of
accidents, especially in high traffic density scenarios. As hinted by the previous results,
traffic safety considerably increased with collective perception. A result with far-reaching
consequences is that only with an equipment rate > 25% does the accident risk drop
to a level that is acceptable for the deployment of autonomous vehicles equipped with
comparable sensor systems.

In view of these findings and the introduced performance metrics, further research
directions arise. Regarding the load on the communication channel generated by collective
perception, several congestion control techniques have been proposed recently. The effect
of the reduction of transmitted data on the service has been analyzed based on the state-of-
the-art metrics mentioned in this work, however, the implications on the traffic safety have
not been studied thus far. Further, the increased safety provided by collective perception
could be investigated in different scenarios, such as intersections and roundabouts, with
more sophisticated sensor systems and even a comparison of the two competing V2X
technologies ITS-G5 and side link C-V2X in terms of safety would be conceivable.
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