3,505 research outputs found

    Dissipative tunneling through a parabolic potential in the Lindblad theory of open quantum systems

    Get PDF
    By using the Lindblad theory for open quantum systems, an analytical expression of the tunneling probability through an inverted parabola is obtained. This penetration probability depends on the environment coefficients. It is shown that the tunneling probability increases with the dissipation and the temperature of the thermal bath.Comment: 16 pages, 6 figure

    Phase Space Representation for Open Quantum Systems within the Lindblad Theory

    Get PDF
    The Lindblad master equation for an open quantum system with a Hamiltonian containing an arbitrary potential is written as an equation for the Wigner distribution function in the phase space representation. The time derivative of this function is given by a sum of three parts: the classical one, the quantum corrections and the contribution due to the opening of the system. In the particular case of a harmonic oscillator, quantum corrections do not exist.Comment: 19 pages, Latex, accepted for publication in Int. J. Mod. Phys.

    Triple resonant four-wavemixing boosts the yield of continuous coherent VUV generation

    Full text link
    Continuous-wave coherent radiation in the vacuum ultraviolet (VUV)wavelength region at 121 nm will be essential for future laser-cooling of trapped antihydrogen [1]. Cold antihydrogen will enable both tests of the fundamental symmetry between matter and antimatter at unprecedented experimental precision [2] and also experiments in antimatter gravity [3]. Another fascinating application of narrowband continuous laser radiation in the VUV is quantum information processing using single trapped ions in Rydberg-states [4, 5]. Here we describe highly efficient continuous four-wave mixing in the VUV by using three different fundamental wavelengths with a sophisticated choice of detunings to resonances of the nonlinear medium. Up to 6 microwatts of vacuum ultraviolet radiation at 121 nm can be generated which corresponds to an increase of three orders of magnitude in efficiency.Comment: 11 pages, 3 figure

    Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen

    Full text link
    Cooling antihydrogen atoms is important for future experiments both to test the fundamental CPT symmetry by high-resolution laser spectroscopy and also to measure the gravitational acceleration of antimatter. Laser-cooling of antihydrogen can be done on the strong 1S-2P transition at the wavelength of Lyman-alpha (121.6nm). A continuous-wave laser at the Lyman-alpha wavelength based on solid-state fundamental lasers is described. By using a two-photon and a near one photon resonance a scan across the whole phasematching curve of the four-wave mixing process is possible. Furthermore the influence of the beam profile of one fundamental beam on the four-wave mixing process is studied.Comment: 4 pages, 4 figure
    corecore