2,918 research outputs found

    Dielectric Metamaterials with Toroidal Dipolar Response

    Full text link
    Toroidal multipoles are the terms missing in the standard multipole expansion; they are usually overlooked due to their relatively weak coupling to the electromagnetic fields. Here we propose and theoretically study all-dielectric metamaterials of a special class that represent a simple electromagnetic system supporting toroidal dipolar excitations in the THz part of the spectrum. We show that resonant transmission and reflection of such metamaterials is dominated by toroidal dipole scattering, the neglect of which would result in a misunderstanding interpretation of the metamaterials macroscopic response. Due to the unique field configuration of the toroidal mode the proposed metamaterials could serve as a platform for sensing, or enhancement of light absorption and optical nonlinearities

    Noninvasive Embedding of Single Co Atoms in Ge(111)2x1 Surfaces

    Full text link
    We report on a combined scanning tunneling microscopy (STM) and density functional theory (DFT) based investigation of Co atoms on Ge(111)2x1 surfaces. When deposited on cold surfaces, individual Co atoms have a limited diffusivity on the atomically flat areas and apparently reside on top of the upper pi-bonded chain rows exclusively. Voltage-dependent STM imaging reveals a highly anisotropic electronic perturbation of the Ge surface surrounding these Co atoms and pronounced one-dimensional confinement along the pi-bonded chains. DFT calculations reveal that the individual Co atoms are in fact embedded in the Ge surface, where they occupy a quasi-stationary position within the big 7-member Ge ring in between the 3rd and 4th atomic Ge layer. The energy needed for the Co atoms to overcome the potential barrier for penetration in the Ge surface is provided by the kinetic energy resulting from the deposition process. DFT calculations further demonstrate that the embedded Co atoms form four covalent Co-Ge bonds, resulting in a Co4+ valence state and a 3d5 electronic configuration. Calculated STM images are in perfect agreement with the experimental atomic resolution STM images for the broad range of applied tunneling voltages.Comment: 19 pages, 15 figures, 3 table

    In situ visualization of Ni-Nb bulk metallic glasses phase transition

    Full text link
    We report the results of the Ni-based bulk metallic glass structural evolution and crystallization behavior in situ investigation. The X-ray diffraction (XRD), transmission electron microscopy (TEM), nano-beam diffraction (NBD), differential scanning calorimetry (DSC), radial distribution function (RDF) and scanning probe microscopy/spectroscopy (STM/STS) techniques were applied to analyze the structure and electronic properties of Ni63.5Nb36.5 glasses before and after crystallization. It was proved that partial surface crystallization of Ni63.5Nb36.5 can occur at the temperature lower than for the full sample crystallization. According to our STM measurements the primary crystallization is originally starting with the Ni3Nb phase formation. It was shown that surface crystallization drastically differs from the bulk crystallization due to the possible surface reconstruction. The mechanism of Ni63.5Nb36.5 glass alloy 2D-crystallization was suggested, which corresponds to the local metastable (3x3)-Ni(111) surface phase formation. The possibility of different surface nano-structures development by the annealing of the originally glassy alloy in ultra high vacuum at the temperature lower, than the crystallization temperature was shown. The increase of mean square surface roughness parameter Rq while moving from glassy to fully crystallized state can be caused by concurrent growth of Ni3Nb and Ni6Nb7 bulk phases. The simple empirical model for the estimation of Ni63.5Nb36.5 cluster size was suggested, and the obtained values (7.64 A, 8.08 A) are in good agreement with STM measurements data (8 A-10 A)
    • …
    corecore