132 research outputs found

    Skew-self-adjoint discrete and continuous Dirac type systems: inverse problems and Borg-Marchenko theorems

    Full text link
    New formulas on the inverse problem for the continuous skew-self-adjoint Dirac type system are obtained. For the discrete skew-self-adjoint Dirac type system the solution of a general type inverse spectral problem is also derived in terms of the Weyl functions. The description of the Weyl functions on the interval is given. Borg-Marchenko type uniqueness theorems are derived for both discrete and continuous non-self-adjoint systems too

    Nonisospectral integrable nonlinear equations with external potentials and their GBDT solutions

    Full text link
    Auxiliary systems for matrix nonisospectral equations, including coupled NLS with external potential and KdV with variable coefficients, were introduced. Explicit solutions of nonisospectral equations were constructed using the GBDT version of the B\"acklund-Darboux transformation

    Second harmonic generation: Goursat problem on the semi-strip and explicit solutions

    Full text link
    A rigorous and complete solution of the initial-boundary-value (Goursat) problem for second harmonic generation (and its matrix analog) on the semi-strip is given in terms of the Weyl functions. A wide class of the explicit solutions and their Weyl functions is obtained also.Comment: 20 page

    General-type discrete self-adjoint Dirac systems: explicit solutions of direct and inverse problems, asymptotics of Verblunsky-type coefficients and stability of solving inverse problem

    Full text link
    We consider discrete self-adjoint Dirac systems determined by the potentials (sequences) {Ck}\{C_k\} such that the matrices CkC_k are positive definite and jj-unitary, where jj is a diagonal m×mm\times m matrix and has m1m_1 entries 11 and m2m_2 entries 1-1 (m1+m2=mm_1+m_2=m) on the main diagonal. We construct systems with rational Weyl functions and explicitly solve inverse problem to recover systems from the contractive rational Weyl functions. Moreover, we study the stability of this procedure. The matrices CkC_k (in the potentials) are so called Halmos extensions of the Verblunsky-type coefficients ρk\rho_k. We show that in the case of the contractive rational Weyl functions the coefficients ρk\rho_k tend to zero and the matrices CkC_k tend to the indentity matrix ImI_m.Comment: This paper is a generalization and further development of the topics discussed in arXiv:math/0703369, arXiv:1206.2915, arXiv:1508.07954, arXiv:1510.0079

    Discrete Dirac system: rectangular Weyl functions, direct and inverse problems

    Full text link
    A transfer matrix function representation of the fundamental solution of the general-type discrete Dirac system, corresponding to rectangular Schur coefficients and Weyl functions, is obtained. Connections with Szeg\"o recurrence, Schur coefficients and structured matrices are treated. Borg-Marchenko-type uniqueness theorem is derived. Inverse problems on the interval and semiaxis are solved.Comment: Section 2 is improved in the second version: some new results on Halmos extension are added and arguments are simplifie
    corecore