2,194 research outputs found

    Comment on ``Theorem for nonrotating singularity-free universes''

    Get PDF
    We show that Raychaudhuri's recently proposed theorem on nonrotating universes cannot be used to rule out realistic singularity-free descriptions of the universe, as suggested by him in PRL 80, 654 (1998).Comment: 1 page, to appear in Phys.Rev.Let

    Phase space solutions in scalar-tensor cosmological models

    Full text link
    An analysis of the solutions for the field equations of generalized scalar-tensor theories of gravitation is performed through the study of the geometry of the phase space and the stability of the solutions, with special interest in the Brans-Dicke model. Particularly, we believe to be possible to find suitable forms of the Brans-Dicke parameter omega and potential V of the scalar field, using the dynamical systems approach, in such a way that they can be fitted in the present observed scenario of the Universe.Comment: revtex, 2 pages, 4 eps figures, to appear in Brazilian Journal of Physics (proceedings of the Conference 100 Years of Relativity, Sao Paulo, Brazil, August 2005

    Pseudoclassical Model of Spinning Particle with Anomalous Magnetic Momentum

    Full text link
    A generalization of the pseudoclassical action of a spinning particle in the presence of an anomalous magnetic momentum is given. The action is written in reparametrization and supergauge invariant form. The Dirac quantization, based on the Hamiltonian analyses of the model, leads to the Dirac-Pauli equation for a particle with an anomalous magnetic momentum in an external electromagnetic field. Due to the structure of first-class constraints in that case, the Dirac quantization demands for consistency to take into account an operators ordering problem.Comment: 9 pages, IFUSP/P-100

    Near-horizon modes and self-adjoint extensions of the Schroedinger operator

    Full text link
    We investigate the dynamics of scalar fields in the near-horizon exterior region of a Schwarzschild black hole. We show that low-energy modes are typically long-living and might be considered as being confined near the black hole horizon. Such dynamics are effectively governed by a Schroedinger operator with infinitely many self-adjoint extensions parameterized by U(1)U(1), a situation closely resembling the case of an ordinary free particle moving on a semiaxis. Even though these different self-adjoint extensions lead to equivalent scattering and thermal processes, a comparison with a simplified model suggests a physical prescription to chose the pertinent self-adjoint extensions. However, since all extensions are in principle physically equivalent, they might be considered in equal footing for statistical analyses of near-horizon modes around black holes. Analogous results hold for any non-extremal, spherically symmetric, asymptotically flat black hole.Comment: 10 pages, 1 fig, contribution submitted to the volume "Classical and Quantum Physics: Geometry, Dynamics and Control. (60 Years Alberto Ibort Fest)" Springer (2018
    corecore