research

Near-horizon modes and self-adjoint extensions of the Schroedinger operator

Abstract

We investigate the dynamics of scalar fields in the near-horizon exterior region of a Schwarzschild black hole. We show that low-energy modes are typically long-living and might be considered as being confined near the black hole horizon. Such dynamics are effectively governed by a Schroedinger operator with infinitely many self-adjoint extensions parameterized by U(1)U(1), a situation closely resembling the case of an ordinary free particle moving on a semiaxis. Even though these different self-adjoint extensions lead to equivalent scattering and thermal processes, a comparison with a simplified model suggests a physical prescription to chose the pertinent self-adjoint extensions. However, since all extensions are in principle physically equivalent, they might be considered in equal footing for statistical analyses of near-horizon modes around black holes. Analogous results hold for any non-extremal, spherically symmetric, asymptotically flat black hole.Comment: 10 pages, 1 fig, contribution submitted to the volume "Classical and Quantum Physics: Geometry, Dynamics and Control. (60 Years Alberto Ibort Fest)" Springer (2018

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021