32,447 research outputs found
Bound states of the Duffin-Kemmer-Petiau equation with a mixed minimal-nonminimal vector cusp potential
The problem of spin-0 and spin-1 bosons subject to a general mixing of
minimal and nonminimal vector cusp potentials is explored in a unified way in
the context of the Duffin-Kemmer-Petiau theory. Effects on the bound-state
solutions due to a short-range interaction are discussed in some detail
Comment on "Wave functions for a Duffin-Kemmer-Petiau particle in a time-dependent potential"
It is shown that the paper "Wave functions for a Duffin-Kemmer-Petiau
particle in a time-dependent potential", by Merad and Bensaid [J. Math. Phys.
48, 073515 (2007)] is not correct in using inadvertently a non-Hermitian
Hamiltonian in a formalism that does require Hermitian Hamiltonians.Comment: 2 page
Corroborating the equivalence between the Duffin-Kemmer-Petiau and the Klein-Gordon and Proca equations
It is shown that the Hamiltonian version of the Duffin-Kemmer-Petiau theory
with electromagnetic coupling brings about a source term at the current. It is
also shown that such a source term disappears from the scenario if one uses the
correct physical form for the Duffin-Kemmer-Petiau field, regardless the choice
for representing the Duffin-Kemmer-Petiau matrices. This result is used to fix
the ambiguity in the electromagnetic coupling in the Duffin-Kemmer-Petiau
theory. Moreover, some widespread misconceptions about the Hermiticity in the
Duffin-Kemmer-Petiau theory are discussed.Comment: 13 pages, to appears in Phys. Rev.
On the bound-state spectrum of a nonrelativistic particle in the background of a short-ranged linear potential
The nonrelativistic problem of a particle immersed in a triangular potential
well, set forth by N.A. Rao and B.A. Kagali, is revised. It is shown that these
researchers misunderstood the full meaning of the potential and obtained a
wrong quantization condition. By exploring the space inversion symmetry, this
work presents the correct solution to this problem with potential applications
in electronics in a simple and transparent way
Missing solution in a Cornell potential
Missing bound-state solutions for fermions in the background of a Cornell
potential consisting of a mixed scalar-vector-pseudoscalar coupling is
examined. Charge-conjugation operation, degeneracy and localization are
discussed
On Duffin-Kemmer-Petiau particles with a mixed minimal-nonminimal vector coupling and the nondegenerate bound states for the one-dimensional inversely linear background
The problem of spin-0 and spin-1 bosons in the background of a general mixing
of minimal and nonminimal vector inversely linear potentials is explored in a
unified way in the context of the Duffin-Kemmer-Petiau theory. It is shown that
spin-0 and spin-1 bosons behave effectively in the same way. An orthogonality
criterion is set up and it is used to determine uniquely the set of solutions
as well as to show that even-parity solutions do not exist.Comment: 10 page
Relativistic Effects of Mixed Vector-Scalar-Pseudoscalar Potentials for Fermions in 1+1 Dimensions
The problem of fermions in the presence of a pseudoscalar plus a mixing of
vector and scalar potentials which have equal or opposite signs is
investigated. We explore all the possible signs of the potentials and discuss
their bound-state solutions for fermions and antifermions. The cases of mixed
vector and scalar P\"{o}schl-Teller-like and pseudoscalar kink-like potentials,
already analyzed in previous works, are obtained as particular cases
Unified Treatment of Mixed Vector-Scalar Screened Coulomb Potentials for Fermions
The problem of a fermion subject to a general mixing of vector and scalar
screened Coulomb potentials in a two-dimensional world is analyzed and
quantization conditions are found.Comment: 7 page
Some exact solutions of the Dirac equation
Exact analytic solutions are found to the Dirac equation for a combination of
Lorentz scalar and vector Coulombic potentials with additional non-Coulombic
parts. An appropriate linear combination of Lorentz scalar and vector
non-Coulombic potentials, with the scalar part dominating, can be chosen to
give exact analytic Dirac wave functions.Comment: 4 pages. No figures. Presented in Hadron 2000: International Workshop
on Hadron Physics, Caraguatatuba, SP, Brasil, April 200
- …