8 research outputs found

    Effect of Laser Optoperforation of the Zona Pellucida on Mouse Embryo Development in vitro

    Get PDF
    Laser operations on cells and embryos are an important field of current photobiology and biophotonics. The high power density of tightly focused laser irradiation provides an efficient impact on matter of cells or embryos. Precise focusing of the laser spot allows strictly controlled perforation of the membrane. The present work was devoted to studying the influence of optoperforation of mammalian embryonic zona pellucida with a tightly focused laser beam with 1.48-µm wavelength on further development of the embryo. Such a laser operation was proposed for application in in vitro fertilization (IVF) practice and intracytoplasmic sperm injection into the oocyte (ICSI). For cultured in vitro oocytes and embryos, the process of natural exiting from the zona pellucida ("hatching") is often impaired, which decreases probability of implantation and pregnancy The goals of the present work were to determine the influence of different manipulations on development of embryos in vitro until blastocyst formation and on the ISSN 0006-2979, Biochemistry (Moscow), 2015, Vol. 80, No. 6, pp. 769-775. © Pleiades Publishing, Ltd., 2015. Original Russian Text © E. O. Zakharchenko, A. D. Zalessky, A. A. Osychenko, A. S. Krivokharchenko, A. K. Shakhbazyan, A. V. Ryabova, V. A. Nadtochenko, 2015, published in Biokhimiya, 2015 769 * To whom correspondence should be addressed. Abstract-The effect of laser optical perforation of the zona pellucida on the viability and development of mouse embryos has been studied. Operations of zona pellucida thinning and single or double perforation were carried out on 2-cell embryo, morula, and blastocyst stages with a laser pulse (wavelength 1.48 µm, pulse duration 2 ms). Embryo development up to the blastocyst stage and hatching efficiency were statistically analyzed. It was found that 2-cell or morula stage embryo zona pellucida thinning or single perforation did not affect development to the blastocyst stage and number of hatched embryos, but it accelerated embryo hatching compared to control groups one day earlier in vitro. Double optoperforation on 2-cell embryo or morula stage did not significantly affect development to the blastocyst stage, but it strongly decreased the number of hatched embryos. Also, zona pellucida perforation at the blastocyst stage had a negative effect: hatching did not occur after this manipulation. Blastocyst cell number calculation after single zona pellucida perforation at 2-cell and morula stages showed that cell number of hatching or hatched blastocysts did not differ from the same control groups. This fact points out that the laser single optoperforation method is a useful and safe experimental tool that allows further manipulations within the zona pellucida. Effect of Laser Optoperforation of the Zon

    Dynamics of DNA-demethylation in early mouse and rat embryos developed in vivo and in vitro

    No full text
    Virtually all mammalian species including mouse, rat, pig, cow, and human, but not sheep and rabbit, undergo genome-wide epigenetic reprogramming by demethylation of the male pronucleus in early preimplantation development. In this study, we have investigated and compared the dynamics of DNA demethylation in preimplantation mouse and rat embryos by immunofluorescence staining with an antibody against 5-methylcytosine. We performed for the first time a detailed analysis of demethylation kinetics of early rat preimplantation embryos and have shown that active demethylation of the male pronucleus in rat zygotes proceeds with a slower kinetic than that in mouse embryos. Using dated mating we found that equally methylated male and female pronuclei were observed at 3 hr after copulation for mouse and 6 hr for rat embryos. However, a difference in methylation levels between male and female pronuclei could be observed already at 8 hr after copulation in mouse and 10 hr in rat. At 10 hr after copulation, mouse male pronuclei were completely demethylated, whereas rat zygotes at 16 hr after copulation still exhibited detectable methylation of the male pronucleus. In addition in both species, a higher DNA methylation level was found in embryos developed in vitro compared to in vivo, which may be one of the possible reasons for the described aberrations in embryonic gene expression after in vitro embryo manipulation and culture

    Laser Fusion of Mouse Embryonic Cells and Intra-Embryonic Fusion of Blastomeres without Affecting the Embryo Integrity

    Get PDF
    Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo’s integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development

    Informative feature selection method for Raman micro-spectroscopy data

    No full text
    The paper presents an algorithm based on low order statistics for the informative feature extraction for Raman spectroscopy data. The proposed method was tested on mouse preimplantation embryos Raman spectra. Both supervised and unsupervised machine learning methods were applied to selected the most informative features to test the separability of the processed data

    Isoprenoid Production via Plant Cell Cultures: Biosynthesis, Accumulation and Scaling-Up to Bioreactors

    No full text
    corecore