4,531 research outputs found

    DD-dimensional charged Anti-de-Sitter black holes in f(T)f(T) gravity

    Full text link
    We present a DD-dimensional charged Anti-de-Sitter black hole solutions in f(T)f(T) gravity, where f(T)=T+βT2f(T)=T+\beta T^2 and D≥4D \geq 4. These solutions are characterized by flat or cylindrical horizons. The interesting feature of these solutions is the existence of inseparable electric monopole and quadrupole terms in the potential which share related momenta, in contrast with most of the known charged black hole solutions in General Relativity and its extensions. Furthermore, these solutions have curvature singularities which are milder than those of the known charged black hole solutions in General Relativity and Teleparallel Gravity. This feature can be shown by calculating some invariants of curvature and torsion tensors. Furthermore, we calculate the total energy of these black holes using the energy-momentum tensor. Finally, we show that these charged black hole solutions violate the first law of thermodynamics in agreement with previous results.Comment: 11 Pages, will appear in JHE

    Identifying candidates for targeted gait rehabilitation: better prediction through biomechanics-informed characterization

    Full text link
    BACKGROUND: Walking speed has been used to predict the efficacy of gait training; however, poststroke motor impairments are heterogeneous and different biomechanical strategies may underlie the same walking speed. Identifying which individuals will respond best to a particular gait rehabilitation program using walking speed alone may thus be limited. The objective of this study was to determine if, beyond walking speed, participants' baseline ability to generate propulsive force from their paretic limbs (paretic propulsion) influences the improvements in walking speed resulting from a paretic propulsion-targeting gait intervention. METHODS: Twenty seven participants >6 months poststroke underwent a 12-week locomotor training program designed to target deficits in paretic propulsion through the combination of fast walking with functional electrical stimulation to the paretic ankle musculature (FastFES). The relationship between participants' baseline usual walking speed (UWSbaseline), maximum walking speed (MWSbaseline), and paretic propulsion (propbaseline) versus improvements in usual walking speed (∆UWS) and maximum walking speed (∆MWS) were evaluated in moderated regression models. RESULTS: UWSbaseline and MWSbaseline were, respectively, poor predictors of ΔUWS (R 2  = 0.24) and ΔMWS (R 2  = 0.01). Paretic propulsion × walking speed interactions (UWSbaseline × propbaseline and MWSbaseline × propbaseline) were observed in each regression model (R 2 s = 0.61 and 0.49 for ∆UWS and ∆MWS, respectively), revealing that slower individuals with higher utilization of the paretic limb for forward propulsion responded best to FastFES training and were the most likely to achieve clinically important differences. CONCLUSIONS: Characterizing participants based on both their walking speed and ability to generate paretic propulsion is a markedly better approach to predicting walking recovery following targeted gait rehabilitation than using walking speed alone

    Scale Invariance and the AdS/CFT Correspondence

    Get PDF
    Using the AdS/CFT correspondence, we show that the Anti-de Sitter (AdS) rotating (Kerr) black holes in five and seven dimensions provide us with examples of non-trivial field theories which are scale, but not conformally invariant. This is demonstrated by our computation of the actions and the stress-energy tensors of the four and six dimensional field theories residing on the boundary of these Kerr-AdS black holes spacetimes.Comment: 3 pages. LaTeX, IJMP style. Contribution to proceedings of DPF 2000, held at Ohio State

    Underdetermined blind source separation based on Fuzzy C-Means and Semi-Nonnegative Matrix Factorization

    Get PDF
    Conventional blind source separation is based on over-determined with more sensors than sources but the underdetermined is a challenging case and more convenient to actual situation. Non-negative Matrix Factorization (NMF) has been widely applied to Blind Source Separation (BSS) problems. However, the separation results are sensitive to the initialization of parameters of NMF. Avoiding the subjectivity of choosing parameters, we used the Fuzzy C-Means (FCM) clustering technique to estimate the mixing matrix and to reduce the requirement for sparsity. Also, decreasing the constraints is regarded in this paper by using Semi-NMF. In this paper we propose a new two-step algorithm in order to solve the underdetermined blind source separation. We show how to combine the FCM clustering technique with the gradient-based NMF with the multi-layer technique. The simulation results show that our proposed algorithm can separate the source signals with high signal-to-noise ratio and quite low cost time compared with some algorithms

    Higher Dimensional Taub-NUTs and Taub-Bolts in Einstein-Maxwell Gravity

    Full text link
    We present a class of higher dimensional solutions to Einstein-Maxwell equations in d-dimensions. These solutions are asymptotically locally flat, de-Sitter, or anti-de Sitter space-times. The solutions we obtained depend on two extra parameters other than the mass and the nut charge. These two parameters are the electric charge, q and the electric potential at infinity, V, which has a non-trivial contribution. We Analyze the conditions one can impose to obtain Taub-Nut or Taub-Bolt space-times, including the four-dimensional case. We found that in the nut case these conditions coincide with that coming from the regularity of the one-form potential at the horizon. Furthermore, the mass parameter for the higher dimensional solutions depends on the nut charge and the electric charge or the potential at infinity.Comment: 11 pages, LaTe

    3D printed infliximab suppositories for rectal biologic delivery

    Get PDF
    Infliximab is a monoclonal antibody that plays an important role in the management and treatment of chronic inflammatory bowel diseases (IBD). Due to its macromolecular structure, its delivery through the oral route is challenging, limiting its administration to only via the parenteral route. The rectal route offers an alternative way for administering infliximab, allowing it to be localised at the disease site and circumventing its passage across the alimentary canal and thus, maintaining its integrity and bioactivity. Three-dimensional (3D) printing is an advanced production technology that permits the creation of dose-flexible drug products from digital designs. The current study assessed the feasibility of utilising semi-solid extrusion 3D printing for the fabrication of infliximab-loaded suppositories for the local treatment of IBD. Various printing inks composed of Gelucire® (48/16 or 44/14) mixed with coconut oil and/or purified water were investigated. It was shown that following reconstitution in water, the infliximab solution can be directly incorporated into the printing ink of Gelucire® 48/16 and can withstand the extrusion process, resulting in well-defined suppositories. Since water content and temperature are critical for safeguarding infliximab's potency, the effect of changing the composition of the printing inks and printing parameters on infliximab's biologic efficiency was evaluated by measuring its binding capacity (i.e., the amount of infliximab that actively binds to its antigen to exert an effect). Despite drug loading assays showing that infliximab remains intact following printing, it was found that the incorporation of water in isolation results in only ∼65% binding capacity. However, when oil is added to the mixture, infliximab's binding capacity increases up to ∼85%. These promising results demonstrate that 3D printing has the potential to be exploited as a novel platform for fabricating dosage forms containing biopharmaceuticals, avoiding patients' compliance issues observed with injectables and addressing their unmet needs

    Advances in powder bed fusion 3D printing in drug delivery and healthcare

    Get PDF
    Powder bed fusion (PBF) is a 3D printing method that selectively consolidates powders into 3D objects using a power source. PBF has various derivatives; selective laser sintering/melting, direct metal laser sintering, electron beam melting and multi-jet fusion. These technologies provide a multitude of benefits that make them well suited for the fabrication of bespoke drug-laden formulations, devices and implants. This includes their superior printing resolution and speed, and ability to produce objects without the need for secondary supports, enabling them to precisely create complex products. Herein, this review article outlines the unique applications of PBF 3D printing, including the main principles underpinning its technologies and highlighting their novel pharmaceutical and biomedical applications. The challenges and shortcomings are also considered, emphasising on their effects on the 3D printed products, whilst providing a forward-thinking view

    Reshaping drug development using 3D printing

    Get PDF
    The pharmaceutical industry stands on the brink of a revolution, calling for the recognition and embracement of novel techniques. 3D printing (3DP) is forecast to reshape the way in which drugs are designed, manufactured, and used. Although a clear trend towards personalised fabrication is perceived, here we accentuate the merits and shortcomings of each technology, providing insights into aspects such as the efficiency of production, global supply, and logistics. Contemporary opportunities for 3DP in drug discovery and pharmaceutical development and manufacturing are unveiled, offering a forward-looking view on its potential uses as a digitized tool for personalised dispensing of drugs

    3D printing: Principles and pharmaceutical applications of selective laser sintering

    Get PDF
    Pharmaceutical three-dimensional (3D) printing is a modern fabrication process with the potential to create bespoke drug products of virtually any shape and size from a computer-aided design model. Selective laser sintering (SLS) 3D printing combines the benefits of high printing precision and capability, enabling the manufacture of medicines with unique engineering and functional properties. This article reviews the current state-of-the-art in SLS 3D printing, including the main principles underpinning this technology, and highlights the diverse selection of materials and essential parameters that influence printing. The technical challenges and processing conditions are also considered in the context of their effects on the printed product. Finally, the pharmaceutical applications of SLS 3D printing are covered, providing an emphasis on the advantages the technology offers to drug product manufacturing and personalised medicine

    A new Solar Desalination System Design and Heat Recovery

    Get PDF
    The work evaluates experimentally technique toimprove fresh water production by careful energy recovery inthe vapour condensation processes; the recovered heat in turnon drives additional evaporation and preheats the feedwater. Apilot plant is designed and constructed in an arid area with 2 m2solar evaporation collector area to evaluate the process. Thisunit is tested on cold and hot days. The effect of mainparameters on fresh water production of the unit is studied. Theexperimental results show that, the production rate andefficiency of the system are strongly affected by solar radiationand level water in solar evaporation collector. Within the studiedranges, the maximum productivity reached to 16.1 kg/ m2day atTvap,av = 87.6 oC , solar radiation 842 W/m2 and level water 1.912kg. According to these results, fresher water production of thepresent system is higher than that solar still desalination systemin the previous studies
    • …
    corecore