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Abstract 22 

Pharmaceutical three-dimensional (3D) printing is a modern fabrication process with 23 

the potential to create bespoke drug products of virtually any shape and size from a 24 

computer-aided design model. Selective laser sintering (SLS) 3D printing combines 25 

the benefits of high printing precision and capability, enabling the manufacture of 26 

medicines with unique engineering and functional properties. This article reviews the 27 

current state-of-the-art in SLS 3D printing, including the main principles underpinning 28 

this technology and highlights the diverse selection of materials and essential 29 

parameters that influence printing. The technical challenges and processing 30 

conditions are also considered in the context of their effects on the printed product. 31 

Finally, the pharmaceutical applications of SLS 3D printing are covered, providing an 32 

emphasis on the advantages the technology offers to drug product manufacturing and 33 

personalised medicine. 34 

 35 
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1. Introduction 40 

Three-dimensional (3D) printing is a type of additive manufacturing technology that 41 

has provided fresh opportunities to rethink manufacturing paradigms in various sectors 42 

which require the design and fabrication of products (Basit and Gaisford, 2018; Capel 43 

et al., 2018; Ong et al., 2020); its use in preparing medicines is particularly promising 44 

(Charoo et al., 2020; Hsiao et al., 2018; Liang et al., 2019; Tan et al., 2018; Trenfield 45 

et al., 2019) and it has the potential to be a disruptive technology, moving the 46 

pharmaceutical sector away from mass production of fixed-dose units towards the 47 

flexible manufacture of individual units with dose or other properties tailored to the 48 

patient (personalised medicine) (Alhnan et al., 2016; Capel et al., 2018; Goole and 49 

Amighi, 2016; Goyanes et al., 2019b; Melocchi et al., 2020; Zhang et al., 2018). In 50 

addition, because objects are fabricated in a layer-by-layer manner from a computer-51 

aided design (CAD) model, 3D printing permits the creation of constructs which would 52 

otherwise be impossible to produce with conventional manufacturing processes (Chen 53 

et al., 2020; Ghosh et al., 2018; Goyanes et al., 2019a; Pandey et al., 2020). In the 54 

pharmaceutical sector, this allows the design and evaluation of novel drug-eluting 55 

devices which were not previously able to be created (Aho et al., 2019; Gioumouxouzis 56 

et al., 2019; Liang et al., 2019; Mohammed et al., 2020; Mohtashami et al., 2020; Xu 57 

et al., 2020). 58 

 59 

Many types of 3D printing process have been developed (Jamróz et al., 2018; 60 

Mukhopadhyay and Poojary, 2018; Trenfield et al., 2018a). Each technology has its 61 

own distinct attributes, so a unique range of applications (Jennotte et al., 2020), and 62 

each requires specific feedstock materials. The American Society for Testing and 63 

Materials (ASTM) classifies 3D printing technologies in seven main categories; vat 64 
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polymerisation, binder jetting, material jetting, direct energy deposition, sheet 65 

lamination, material extrusion and powder bed fusion (ASTM International, 2016). 66 

Within these categories, there are subsets of printer types, broadly grouped in terms 67 

of the method they use to consolidate the printer feedstock into a solid object.  68 

 69 

One of these, selective laser sintering (SLS), is a subset of powder bed fusion 3D 70 

printing; it uses a laser beam to create solid objects by heating powder particles, fusing 71 

them together at their surfaces (Fina et al., 2018a). The SLS technology was 72 

developed by Carl Deckard in 1984, and was based on a neodymium-doped yttrium 73 

aluminum garnet (Nd:YAG) laser, which had a power of 100 W (Beaman and Deckard, 74 

1990). The printer feedstock material was a powder of acrylonitrile butadiene styrene 75 

(ABS), a thermoplastic polymer used in many prototypes (Shellabear and Nyrhilä, 76 

2004).  77 

 78 

Currently, the majority of commercially available SLS printers employ carbon dioxide 79 

(CO2) lasers, which provide higher power at lower cost, permitting the use of a wide 80 

array of powdered thermoplastic materials. As such, applications of SLS span many 81 

fields, including the aerospace, automotive, military, medical, dentistry, engineering 82 

and electronics industries (Di Giacomo et al., 2016; George et al., 2017; Hettesheimer 83 

et al., 2018; Jiba et al., 2019; King and Tansey, 2003; Revilla-León and Özcan, 2017; 84 

Theodorakos et al., 2015; Williams and Revington, 2010). In the pharmaceutical 85 

sector, therapeutic products can be fabricated using SLS printing if the feedstock 86 

material is a powder blend of a drug and thermoplastic polymer. This means that, 87 

compared with other 3D printing technologies, the feedstock material of SLS printing 88 

has the closest resemblance to that of traditional tabletting. As such, it has been 89 
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anticipated that SLS is more amenable for pharmaceutical use. Whilst other 3D 90 

printing technologies, such as binder jetting, are also based on powdered materials, 91 

being a solvent-free process makes SLS a faster process, wherein the need for 92 

additional drying steps to evaporate any residual binder is avoided.  93 

 94 

This article reviews the current state-of-the-art in SLS 3D printing, including the main 95 

principles underpinning the technology. The technical challenges and processing 96 

conditions are considered in the context of their effects on the printed product. Finally, 97 

pharmaceutical applications of SLS 3D printing are highlighted, providing an emphasis 98 

on the advantages the technology offers to drug product manufacturing and 99 

personalised medicine. 100 

 101 

2.  Technological stratification 102 

Powder bed fusion is one of the seven main 3D printing classifications assigned by 103 

the ASTM (Chatham et al., 2019). It refers to the selective consolidation of powder 104 

particles into 3D objects using a heat source focused onto specific areas. Powder bed 105 

fusion currently has four subset technologies; SLS, selective laser melting (SLM), 106 

electron beam melting (EBM) and multijet fusion (MJF) (Gibson et al., 2015). The 107 

technologies differ by the type of materials they employ and by the type and amount 108 

of light utilised to transmit energy to the powder bed. In all cases, objects are built 109 

layer-by-layer through the use of thermal energy resulting from the combination of 110 

increased temperature and the use of a light source (Goodridge and Ziegelmeier, 111 

2017) and all use powders as their feedstock materials. One immediate benefit of this 112 

is that it permits fabrication of overhanging and/or intricate structures, without the need 113 
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for a secondary support material, because the loose powder particles inside the bed 114 

act as a support, maintaining the integrity of the object during printing.  115 

 116 

Thermoplastic polymers are used as the main feedstock material in SLS printing. The 117 

laser beam melts the surface of the powder particles, fusing them together, a process 118 

termed ‘sintering’ (Kruth et al., 2003a). Because a relatively low-power laser is used, 119 

the printer itself heats the feedstock powder, so the laser needs only to provide a small 120 

increase in surface temperature of the powder to induce sintering. When the feed 121 

materials are metals or alloyed powders, the technology is normally called selective 122 

laser melting (SLM) or direct metal laser sintering (DMLS) (Spears and Gold, 2016).  123 

 124 

EBM also uses metal and alloyed powders as its main feed material (Murr et al., 2012; 125 

Rafi et al., 2013), although the energy required to sinter the particles is provided with 126 

an electron beam instead of a laser beam. The high intensity of the electron beam 127 

renders the powdered materials completely melted during the printing process. MJF 128 

utilises only one feedstock, nylon (for instance, PA 12), and it employs an infrared (IR) 129 

lamp as the energy source. Two additional components are needed in MJF (Sillani et 130 

al., 2019); (i) a fusion agent, which is precisely deposited by an ink-jet head onto the 131 

printing regions, and (ii) a detailing agent, which is responsible for absorbing heat from 132 

the edges of the object. As such, only the regions coated with the fusion agent will 133 

melt, enhancing the printing efficiency and speed. The addition of the detailing agent 134 

decreases thermal bleeding (e.g. the spreading of heat across neighbouring regions) 135 

and enhances printing resolution and accuracy.  136 

 137 
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Of these printing technologies, SLS is most well suited for use within pharmaceutical 138 

research, because it is able to sinter pharmaceutical-grade powders. Thus, it offers a 139 

novel and versatile approach for the rapid tailoring of medications.  140 

 141 

3. Fundamentals 142 

The SLS apparatus is comprised of six parts; (i) a build platform, upon which the 3D 143 

object is fabricated; (ii) a laser, responsible for the sintering process; (iii) Galvano 144 

mirrors, which are used to project and direct the laser beam to the correct printing 145 

positions; (iv) a powder reservoir platform or hopper, which holds and dispenses fresh 146 

powder onto the building platform; (v) a mechanical roller that spreads and flattens 147 

fresh powder on the building platform; and (vi) a material vat that recovers unsintered 148 

powder material (Figure 1) (Akande et al., 2016; Ma et al., 2018; Tiwari et al., 2015).  149 

 150 

Insert Figure 1 151 

 152 

Figure 1. Graphical illustration of an SLS 3D printer, highlighting its major 153 

components.  154 

 155 

The printing process entails raising the building platform to its uppermost position, 156 

whereupon a fresh layer of powder is spread and flattened by the roller (Gokuldoss et 157 

al., 2017). This is followed by the activation of the laser beam, which scans across the 158 

powder and sinters it by following the pattern from the 3D file. The building platform is 159 

then lowered, creating enough space for a new powder layer. Then, the reservoir 160 

platform ascends, and the roller spreads a new layer of powder. The process repeats 161 

until the printing job is finished (Sillani et al., 2019). Upon the completion of the 162 
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process, the printer is left to cool. Subsequently, excess unsintered material is brushed 163 

off or cleaned using compressed air and the printed object is recovered. In some 164 

cases, the final object may require post-processing (e.g. coating, polishing or surface 165 

finishing) to improve its mechanical properties (e.g. tensile strength and hardness) or 166 

appearance (e.g. dimensions and surface precision). 167 

 168 

4. Fine-tuning the process 169 

The processing parameters utilised during printing can significantly influence the final 170 

object (Figure 2). To attain optimum characteristics, the parameters have to be 171 

optimised to suit the powder properties and the intended application. As such, it is 172 

critical to have a clear understanding of the correlation between the processing 173 

parameters and their effect on the powder (Pilipović et al., 2018). The main processing 174 

parameters relating to the SLS technology can be described as follows: 175 

 176 

Insert Figure 2 177 

 178 

Figure 2. A graphical illustration of the different processing parameters involved in the 179 

SLS 3D printing process. 180 

 181 

4.1. Printing Temperature 182 

The powder bed temperature refers to the temperature of the powder in the building 183 

platform. This is usually regulated using two parameters; the surface temperature, 184 

which refers to the temperature on the superficial layers of the powder in the building 185 

platform, and the chamber temperature, which is the temperature inside the printer 186 

chamber. Controlling the bed temperature is essential for promoting the sintering 187 
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process (Gibson and Shi, 1997). The amount of energy required from the laser for 188 

sintering is reduced when the powder bed is pre-heated, limiting internal stresses and 189 

thermal deformations. Since thermoplastic polymers can be either amorphous or 190 

crystalline, the optimum bed temperature will be highly variable. In the case of 191 

amorphous polymers, the bed temperature is usually set to or just above the glass 192 

transition temperature (Tg). This is because at this temperature the polymers are highly 193 

viscous, enabling their consolidation. In the case of crystalline polymers, consolidation 194 

is achieved by setting the bed temperature a few degrees (e.g. 3 - 4°) lower than the 195 

melting temperature (Tm). For semi-crystalline materials and polymer mixtures, the 196 

optimum bed temperature is usually set close to their Tg, which can be calculated using 197 

the simple Fox equation: 198 

1

𝑇𝑔
=

𝑊1

𝑇𝑔
′

+
𝑊2

𝑇𝑔
"
 199 

(Eq. 1) 200 

𝑊1 and 𝑊2 refer to the weight fractions of each polymer and, 𝑇𝑔
′ and 𝑇𝑔

" refer to the Tg 201 

of each individual polymer, respectively (Gibson and Shi, 1997). 202 

 203 

4.2. Laser beam 204 

Absorptance refers to the efficiency of a material in absorbing energy and is defined 205 

as the ratio of absorbed radiant energy to the incident radiant power (Tolochko et al., 206 

2000). The absorptance (𝐴) is usually calculated by measuring the reflectance (𝑅) of 207 

a material, wherein the latter is defined as the ratio of reflected radiation to the incident 208 

radiation. The relationship between both values is derived using the following 209 

equation: 210 

𝐴 = 1 − 𝑅 211 

(Eq. 2) 212 
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 213 

Typically, the absorptance will depend upon several factors, including the laser 214 

wavelength (λ), the type of material used, the morphology of the powder particles, the 215 

nature of the ambient gas within the controlled atmosphere and the bed temperature. 216 

Each laser has a defined wavelength; typically, in the case of metals, the lower the 217 

wavelength, the higher is their absorption (Bergström, 2008; Schuőcker, 1998). In the 218 

case of polymers, their absorption increases as the wavelength is increased (Kruth et 219 

al., 2003b; Tolochko et al., 2000). Moreover, the general trend that most materials 220 

follow is that the denser the material is, the smaller is its absorption depth and vice 221 

versa. An exception to this is transparent materials, wherein light can pass through the 222 

material, resulting in limited light absorption. In the case of loose powders, due to the 223 

presence of pores between powder particles, the incident radiation is distributed 224 

between the surface of the powder particles on the top layer and the powder particles 225 

on the layers underneath it. As such, the energy is absorbed deeper as compared to 226 

dense material. 227 

 228 

The earliest models of SLS printers employed Nd:YAG lasers (λ = 1.064 µm). These 229 

are crystal lasers that are pumped into excitation using an external source (e.g. flash 230 

lamp or diodes) (Figure 3). However, Nd:YAG lasers have a short lifespan, requiring 231 

constant replacement. As such the majority of industrial SLS printers are designed to 232 

operate with either single or multiple carbon dioxide (CO2) lasers (λ = 10.6 µm), with 233 

power ranges between 50 to 200 W. These are gas lasers that encompass a CO2 234 

mixture that is excited using an electrical current (Figure 3). Some of the newer 235 

industrial SLS platforms employ carbon monoxide (CO) lasers, which have an ultra-236 

fine spot size (e.g. diameter of the laser beam) that is half that of a CO2 laser, 237 
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permitting higher printing precision and the fabrication of finer objects. Benchtop 238 

systems on the other hand, utilise diode (λ is variable) or fibre (λ = 1.064 µm) lasers, 239 

both of which can supply a comparable laser power to that of CO2 lasers but are much 240 

cheaper (Formlabs, 2020b). Fibre lasers function using a seed laser that induces the 241 

generation of a beam, which is amplified in glass fibres energised by pump diodes. 242 

Compared with CO2 lasers with analogous powers, fibre lasers have a thinner laser 243 

spot size, enabling the delivery of a greater laser power density and reducing the time 244 

needed for sintering the powder (Shellabear and Nyrhilä, 2004; Yasa et al., 2012). 245 

Diode lasers utilise semiconductors connected to fibres or mirrors to induce laser 246 

irradiation (Figure 3). The type of semiconductor material that is selected dictates the 247 

wavelength of the emitted laser beam. Thus, diode lasers can span from the infrared 248 

to the ultraviolet (UV) regions of the spectrum. Due to their higher efficiency and lower 249 

energy density, diode lasers have shown higher consistency in melting and heating 250 

zones when compared to Nd:YAG, fibre and CO2 lasers (Bergmann et al., 2013; 251 

Zavala-Arredondo et al., 2017).  252 

 253 

Insert Figure 3 254 

 255 

Figure 3. Graphical illustration of the differences between carbon dioxide (CO2), 256 

neodymium-doped yttrium aluminum garnet (Nd:YAG), diode and fibre lasers. HR: 257 

High reflection; LR: Low reflection; FBG: Fibre Bragg Grating. 258 

 259 

Owing to their optical characteristics, materials can only absorb energy of specific 260 

wavelengths. Thus, each laser type is suitable for a different range of materials. For 261 

thermoplastic polymers, superior absorption is achieved at a higher wavelength. As 262 
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such, CO2 lasers are considered more efficient because a higher absorptance can be 263 

achieved with a lower energy (Table 1). In some cases, materials cannot be sufficiently 264 

sintered on their own. These materials require addition of a temporary binder to 265 

improve the sintering process. Upon the completion of the sintering process, the 266 

additional binder can be removed in a furnace (Kruth et al., 2003b). 267 

 268 

Table 1. Absorptance (𝑨) of thermoplastic polymers from two different laser beams: 

(a) neodymium-doped yttrium aluminum garnet (Nd:YAG) (λ = 1.06 µm), and (b) 

carbon dioxide (CO2) (λ = 10.6 µm). The data presented here are from those 

presented in the original sources (Kruth et al., 2003b; Tolochko et al., 2000). 

Thermoplastic polymer Nd:YAG absorptance CO2 absorptance 

Polytetrafluoroethylenes 0.05 0.73 

Polymethylacrylates 0.06 0.75 

Epoxypolyethers 0.09 0.94 

 269 

The wavelength of the laser beam is one of the few parameters that cannot be 270 

adjusted. Instead, to maximise the absorptance of a polymer, the energy transmittance 271 

from the laser beam is adjusted by modulating its power and scanning speed. The 272 

laser power (𝑃) refers to the power at the powder bed surface. To ensure optimum 273 

sintering, the laser power should be fine-tuned to yield an appropriate bed surface 274 

temperature. This also plays a role in the overall printing time. A summary of the 275 

different benchtop SLS printers and their characteristics is shown in Table 2.  276 
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Table 2. Summary of some of the benchtop SLS 3D printers, alongside their unique characteristics. 

3D Printer 
Laser 
type 

Laser wavelength 
(µm) 

Laser power 
(W) 

Layer 
thickness (µm) 

Build volume 
(L x W x H in mm) 

Reference 

Formlabs Fuse 1 Fibre 1.066 10 100 165 x 165 x 320 (Formlabs, 2020a) 

Natural Robotics VIT SLS CO2 10.6 40 100-150 250 x 250 x 300 (Natural Robotics, 2020) 

Sharebot Snowwhite CO2 10.6 14 100 100 x 100 x 100 (Sharebot, 2020) 

Red Rock 3D Diode 0.450 2.5 100 180 x 180 x 180 (Red Rock 3D, 2020) 

Sinterit Lisa Pro Diode 0.808 5 75-175 150 x 200 x 260 (Sinterit, 2020) 

Sintratec Kit Diode 0.445 2.3 50-150 110 x 110 x 110 (Sintratec, 2020) 

277 
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4.3. Laser scanning speed 278 

The laser scanning speed ( 𝑉𝑠; also known as beam speed) refers to the rate at which 279 

the laser beam travels when drawing the 3D pattern. The laser scanning speed can 280 

highly affect the laser energy density on the surface of the powder, where the 281 

relationship between both parameters can be explained using the equation (Kumar, 282 

2020): 283 

 284 

𝐸𝑣 =
𝑃

𝑆𝑑 × 𝑉𝑠
 285 

(Eq. 3) 286 

Where 𝐸𝑣 refers to the laser energy density, 𝑃 is the laser power and 𝑆𝑑 is the laser 287 

spot size.  288 

 289 

Generally, lowering the laser scanning speed induces in a high laser energy density 290 

and increases the contact time between the powder bed and the laser beam (Fred et 291 

al., 2014). This allows higher energy transmission to the powder bed, resulting in a 292 

higher degree of sintering and producing denser objects. The downside to this is that 293 

it results in longer printing times. A greater laser scanning speed results in a low 294 

energy density and less energy being transmitted to the powder and thus leads to less 295 

sintering and so more porous objects. 296 

 297 

4.4. Scan spacing 298 

Scan spacing, which is also known as hatch distance or line offset, refers to the 299 

distance between two consecutive scanning vectors. The optimum scan spacing 300 

should be set with respect to the laser beam diameter and energy density.  If the scan 301 

space is too large, the layers might undergo incomplete sintering, wherein the layers 302 
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would not be connected, leaving unsintered parts in between and yielding objects with 303 

low mechanical strength. Like the slice thickness, the scan spacing is proportionate to 304 

the printing time. As such, increasing the scan spacing reduces the time needed for 305 

printing each layer. Decreasing the scan spacing lengthens the fabrication process, 306 

but it is best for creating thin and intricate structures. However, this decrease should 307 

not exceed the recommended limit, because if the scan spacing is too short, it might 308 

induce thermal deformations. 309 

 310 

4.5. Particle Size and Shape  311 

Particle morphology plays a major role in in the sintering process (Williams et al., 312 

2005). To achieve optimum sintering, a balance between optimum size and shape of 313 

the powder particles should be achieved. If the particles are too big, they would require 314 

more energy for proper sintering. More importantly, bigger particles will leave larger 315 

empty spaces between each other, resulting in poor mechanical properties, which 316 

cannot always be overcome with higher laser energy. On the other hand, the flow 317 

properties of very small particles are often hindered by high electrostatic forces, 318 

resulting in their agglomeration (Schulze, 2008). More importantly, the particle size 319 

distribution should be narrow to ensure even absorption of energy. Similarly, 320 

irregularity in particles shape could also result in uneven sintering and obstruct 321 

flowability. Ideally, the powder particles should be spherical in shape, with sizes 322 

ranging between 58 to 180 µm (Leong et al., 2006). This imparts good flow properties 323 

and permits homogenous energy transmittance amongst the powder bed.   324 

 325 

4.6. Layer thickness 326 
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Layer thickness (ℎ), which is also known as the slice thickness, refers to the height of 327 

each individual layer. This is controlled by adjusting the depth by which the building 328 

platform is lowered before the start of each layer. The slice thickness will usually 329 

depend on the 3D printer and typically ranges between 0.07 to 0.5 mm (Kruth et al., 330 

2003b). Like other 3D printing technologies, the thinner the layers are, the higher the 331 

printing resolution is. On the other hand, the thicker the layers are, the rougher the 332 

surface is and the lower is the printing resolution. Nonetheless, to ensure accuracy, 333 

the layer thickness should not fall below the average particle size of the powder 334 

(Gibson and Shi, 1997). It should be noted though that the printing resolution is directly 335 

proportional to the printing time; the higher the printing resolution, the longer is the 336 

printing time. 337 

 338 

Due to the complex nature of SLS 3D printing, there are other parameters that also 339 

contribute to the final outcome of the process. This includes the flow of inert gas (e.g. 340 

argon or nitrogen) inside the printing chamber, which prevents oxidation by removing 341 

condensates produced during printing. Another important factor is the dwell time, 342 

which refers to the cooldown time required at the start and end of each layer. Typically, 343 

the longer the dwell time, the better the overall geometrical features of the object 344 

(Arregui et al., 2018). The building orientation (e.g. horizontal, vertical or diagonal) 345 

controls the physical properties and mechanical performance of the final object 346 

(Kundera and Kozior, 2016, 2018). Similarly, the building position (physical location 347 

on the build plate) could also influence the mechanical properties of the end-products, 348 

because objects built in the middle regions tend to undergo higher intensity sintering 349 

due their ability to retain heat for longer periods of time. Another dominating factor is 350 

post-treatment (e.g. coating, annealing or surface finishing), which could significantly 351 
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affect the tensile strength, surface hardness, dimensional accuracy and precision 352 

(Dizon et al., 2018; Gibson and Shi, 1997; Nelson and Vail, 1991). 353 

 354 

5. Diversity of feedstock 355 

Thermoplastic polymers are the most commonly used materials in SLS 3D printing.  356 

To fabricate parts with high resolution and dimensional accuracy, amorphous 357 

polymers, such as polycarbonates (PC), are mainly used (Kruth et al., 2003b). 358 

However, 3D objects made with PC lack strength and robustness. Instead, semi-359 

crystalline polymers, such as nylons (also known as polyamides, PA), are utilised. Due 360 

to the ability of PA to be fully consolidated into highly dense objects, it is employed to 361 

create highly functional prototypes (Salmoria et al., 2012b; Salmoria et al., 2011). 362 

Other frequently used thermoplastic polymers include, poly-L-lactide (PLLA) (Duan et 363 

al., 2010; Lee et al., 2008), polylactic acid (PLA) (Bai et al., 2017; Zhang et al., 2019), 364 

poly(ether-ether-ketone) (PEEK) (Tan et al., 2003; Tan et al., 2005b), 365 

polycaprolactone (PCL) (Leong et al., 2007; Williams et al., 2005), high density 366 

polyethylene (HDPE) (Salmoria et al., 2007b; Salmoria et al., 2013a), 367 

polymethylmethacrylate (PMMA) (Leite et al., 2010; Salmoria et al., 2007a), 368 

polyurethane (PU) (Sun et al., 2020) and polyvinyl alcohol (PVA) (Chua et al., 2004). 369 

 370 

6. Industrial applications 371 

Typically, the use of 3D printing within industrial production helps streamline a more 372 

sustainable and efficient manufacturing process. By combining flexibility in materials 373 

and freedom in design, SLS can be exploited in a myriad of fields. As an example, 374 

SLS has been widely applied for the manufacturing of electronics, substituting 375 

traditional micro-patterning methods (Theodorakos et al., 2015). Within the automotive 376 
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and aviation industries, SLS has been utilised to create lightweight parts whilst cutting 377 

down energy consumption during production (Hettesheimer et al., 2018). The military 378 

has investigated the potential of utilising SLS to generate explosives in a harmless 379 

manner (Jiba et al., 2019). In the medical field, SLS has been utilised to fabricate 380 

implants specifically tailored to the patient (Williams and Revington, 2010) and for 381 

surgical tooling (George et al., 2017). SLS has shown noticeable application in tissue 382 

engineering for repairing or regenerating tissues (Chua et al., 2004; Eosoly et al., 383 

2010; Partee et al., 2006; Tan et al., 2003; Tan et al., 2005a). Similarly, SLS has been 384 

explored in dentistry to create prosthetics (Di Giacomo et al., 2016) and dental 385 

appliances (Revilla-León and Özcan, 2017). 386 

 387 

7. Pharmaceutical applications 388 

The United States (U.S.) Food and Drug Administration (FDA) approval of the first 3D-389 

printed tablet (Spritam®) marked an important milestone in the history of 3D printing, 390 

setting a benchmark for manufacture of pharmaceuticals (Aprecia Pharmaceuticals, 391 

2018). Since then, 3D printing has continued to evolve rapidly, with cutting-edge 392 

research showing the many novel prospects the technology can offer. This has led 393 

researchers to investigate and explore more 3D printing technologies to evaluate their 394 

suitability for pharmaceutical applications. Compared with some of the other 3D 395 

printing technologies, SLS has had a slow-moving journey within pharmaceutical 396 

research. This is primarily due to initial fears of drug and excipients degradation 397 

caused by the laser beam (Alhnan et al., 2016) and absence of pharmaceutically 398 

approved materials that are commercialised for SLS use. 399 

 400 

7.1. Adapting the technology 401 
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The powder blend in SLS mainly consists of a thermoplastic polymer. However, one 402 

important aspect to consider is that these polymers need to be biocompatible and 403 

biodegradable (i.e. generally recognised as safe, GRAS) and accredited by the FDA. 404 

As such, commercial SLS materials are not suited for pharmaceutical use. The 405 

selection of the polymer will depend primarily on the intended application (e.g. dosage 406 

form and site of action) and required drug release characteristics (e.g. orally 407 

disintegrating, immediate or sustained profile). Regardless of the final application, the 408 

selected polymer also needs to meet the printing requirements, such as having 409 

appropriate flow properties with suitable particle shape and size (≤ 180 µm). A range 410 

of polymers have been successfully employed within pharmaceutical research. These 411 

include PCL (Salmoria et al., 2017a; Salmoria et al., 2012a; Salmoria et al., 2017c; 412 

Salmoria et al., 2016; Salmoria et al., 2013b; Salmoria et al., 2013c),  HDPE (Salmoria 413 

et al., 2017b; Salmoria et al., 2018), Kollicoat IR (e.g. polyvinylalcohol and 414 

polyethylene glycol co-polymer) (Awad et al., 2019), Eudragit (e.g. methacrylic acid 415 

and ethyl acrylate co-polymer) (Fina et al., 2017), hydroxypropyl methylcellulose 416 

(HPMC) (Fina et al., 2018c), Kollidon VA64 (e.g. vinylpyrrolidone-vinyl acetate co-417 

polymer) (Allahham et al., 2020; Barakh Ali et al., 2019), polyethylene oxide (PEO) 418 

(Fina et al., 2018b), cellulose acetate (Salmoria et al., 2009) and ethyl cellulose (EC) 419 

(Awad et al., 2019; Fina et al., 2018b). 420 

 421 

The most important constituent in a pharmaceutical dosage form is the drug agent. 422 

The choice of the drug substance will predominantly depend upon the treatment 423 

purpose.  One of the factors that limits the choice of drugs suitable for SLS printing is 424 

sensitivity to light and heat. Sensitivity can be reduced by pairing the drug substance 425 

with a polymer that has high laser absorption. Another approach involves 426 
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microencapsulation of the drug substance within a polymer matrix (Duan et al., 2011; 427 

Zhou et al., 2008). As the sintering process occurs at the surface, the integrity of the 428 

drug is maintained throughout the printing procedure. Alternatively, the drug can be 429 

incorporated into the dosage form after the printing process has finished. For instance, 430 

the drug substance can be selectively bound onto the surface of the printed dosage 431 

form by integrating a suitable substrate into the printed matrix (Duan and Wang, 2010). 432 

 433 

Depending on the selected polymer and the laser type of the SLS printer, some powder 434 

blends may require the addition of an absorptance enhancer. The type of absorptance 435 

enhancer will depend on the wavelength of the laser. Pre-processing the polymer 436 

powder could improve the particle morphology. For instance, grinding and milling could 437 

reduce the particle size, spray drying could improve particle morphology (Maa et al., 438 

1997; Vehring, 2008), whilst sieving could aid in controlling the size distribution (Awad 439 

et al., 2019). Likewise, the inclusion of flow enhancers (e.g. magnesium stearate, talc 440 

and colloidal silica) could improve the flow characteristics of the powder (Vasilenko et 441 

al., 2011). 442 

 443 

7.2. Historical perspectives 444 

The use of SLS in pharmaceutics dates back to 2001 (Low et al., 2001). The 445 

technology was first exploited to create porous drug delivery systems by fine tuning 446 

the laser power and scanning speed. Cubes (8 x 8 x 8 mm) were fabricated using 447 

nylon and infiltrated with a methylene blue dye, and the 3D printing platform was based 448 

on a CO2 laser. The porosity was found to be directly proportional to the scanning 449 

speed but was inversely proportional to the laser power. Although the printed devices 450 

were highly porous, they had two highly dense sides resulting from the inter-layer 451 
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dwelling time. As such, the drug diffusion from these sides was retarded compared 452 

with the rest of structure. Subsequent studies aimed at understanding further the effect 453 

of the processing parameters (Cheah et al., 2002). It was found that minimal scanning 454 

length of 2 mm was needed to yield the desired porosity. Moreover, it was 455 

demonstrated that the printing orientation could be utilised to reposition the dense 456 

walls and thus, enabling higher control over porosity and drug release.  457 

 458 

This was followed by the first attempt to utilise biodegradable polymers for SLS 3D 459 

printing in 2006 (Leong et al., 2006). Two different polymers, PCL and PLLA, were 460 

employed. To obtain optimum porosity whilst maintaining strong mechanical 461 

properties, it was necessary to balance the laser power and scanning speed. It was 462 

determined that the ideal porosity could be achieved by lowering the laser power and 463 

accelerating the scanning speed. Subsequently, the first attempt to incorporate a drug 464 

within the polymer mixture prior to sintering was made in 2007 (Leong et al., 2007). A 465 

uniform drug distribution was obtained, wherein the dissolution pattern unfolded with 466 

a burst release followed by a sustained drug release. To reduce the initial drug burst 467 

release, additional exterior barrier rings created by the dwell of the laser were included 468 

into the structures. As the number of circular barriers increased, the burst release was 469 

reduced. It is worth mentioning that none of the aforementioned studies investigated 470 

the effect of the laser beam on the drug stability. As such, doubts regarding the 471 

suitability of this technology for pharmaceutical production still existed. 472 

 473 

In 2017, the first SLS printed oral dosage forms were fabricated (Fina et al., 2017). 474 

For the first time, a diode laser (λ = 0.445 µm; 𝑃 = 2.3 W) was used for SLS printing 475 

within pharmaceutical research. Two pharmaceutical grade polymers, Eudragit L100-476 
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55, having prolonged release properties, and Kollicoat IR, with immediate release 477 

characteristics, respectively, were successfully utilised to create paracetamol 3D 478 

printed tablets, termed PrintletsTM. With drug degradation from the diode laser being a 479 

major concern, degradation studies showed that no drug degradation has occurred. It 480 

was evident, however, that no sintering can be achieved using the polymer and drug 481 

mixture on their own. This is because the diode laser absorbs in the visible light region 482 

and with most pharmaceutical powders being white, no absorption will occur. This 483 

instigated the addition of a pharmaceutical grade colourant (e.g. Candurin® Gold 484 

Sheen) to enable the absorptance from the diode laser. 485 

 486 

7.3. New opportunities 487 

SLS brings along a set of advantageous features, making its applications within the 488 

pharmaceutical field distinct. An example is the ability of SLS in creating free-form 3D 489 

objects without the need for additional support materials, opening up opportunities for 490 

the fabrication of a wide array of dosage forms. SLS also enables the creation of 491 

objects with high degrees of porosity (e.g. which refers to the percentage of void 492 

spaces out of the total volume of the object) and pore connectivity (e.g. which refers 493 

to the overall volume of pores within an object) (Leong et al., 2003). Unlike other 494 

printing technologies (e.g. fused deposition modelling (FDM) and stereolithography 495 

(SLA)), SLS does not require the pre-processing of its starting material, nor does it 496 

necessitate the inclusion of additional excipients that could pose potential toxicity. The 497 

absence of solvents within the process enhances safety and provides better stability 498 

to drug substances that are liable to hydrolysis.  499 

 500 
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Previous studies have shown that SLS is more cost effective for the production of 501 

personalised parts when compared to other 3D printing technologies (e.g. FDM and 502 

SLA) and conventional production processes (e.g. injection moulding) (Awad et al., 503 

2018; Hopkinson and Dicknes, 2003). Moreover, printed objects can be stacked on 504 

top of one another, increasing the capacity of the build platform and enhancing 505 

productivity, making it highly amenable for scale up and mass production. Additionally, 506 

SLS offers the option of recycling and reprocessing feed material, reducing waste and 507 

supporting green pharmaceuticals.  508 

 509 

7.4. Novel designs 510 

SLS is an adaptable technology suitable for printing a variety of dosage forms with 511 

unique properties. A summary of the cutting-edge pharmaceutical creations fabricated 512 

using SLS 3D printing is shown in Table 3. SLS offers a wide selection of materials 513 

with different inherent properties. By selecting a suitable polymer and fine-tuning the 514 

processing parameters, an array of drug release modes could be achieved.  515 
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Table 3. Summary of the cutting-edge pharmaceutical creations fabricated using SLS 3D printing.  

Pharmaceutical 
application 

Active pharmaceutical 
ingredient(s) 

Polymer(s) Other Excipients References 

Orally disintegrating 

Printlets 
 Ondansetron Kollidon VA64 

β-Cyclodextrin, Candurin® 

Gold Sheen, Mannitol 
(Allahham et al., 2020) 

 Paracetamol Kollidon VA64 Candurin® Gold Sheen (Fina et al., 2018c) 

 Diclofenac sodium Kollidon VA64 
Candurin® NXT Ruby Red, 

Lactose monohydrate 

(Barakh Ali et al., 

2019) 

Immediate-release 

Printlets 
Paracetamol Kollicoat IR Candurin® Gold Sheen (Fina et al., 2017) 

 Paracetamol HPMC Candurin® Gold Sheen (Fina et al., 2018c) 

Controlled-release 

Printlets 
- PCL, PLLA  - (Leong et al., 2006) 
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 Paracetamol Eudragit L100-55 Candurin® Gold Sheen (Fina et al., 2017) 

 Progesterone  PCL - 
(Salmoria et al., 

2017a) 

Multi-reservoir drug 

delivery system 
Progesterone PCL - 

(Salmoria et al., 

2012c) 

Tissue and bone 

regeneration implants 
5-fluorouracil PE - 

(Salmoria et al., 

2017b) 

 Ibuprofen PCL - (Salmoria et al., 2016) 

 5-fluorouracil PCL - 
(Salmoria et al., 

2017c) 

Gyroid lattices and bi-

layered Printlets 
Paracetamol  

PEO, Eudragit L100-55, 

Eudragit RL and EC 
Candurin® Gold Sheen (Fina et al., 2018b) 

Miniprintlets Paracetamol, ibuprofen Kollicoat IR, EC Candurin® Gold Sheen (Awad et al., 2019) 
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Intrauterine devices Progesterone, 5-fluorouracil HDPE  (Salmoria et al., 2018) 

Printlets for the visually-

impaired 
Paracetamol Kollidon VA64 Candurin® Gold Sheen (Awad et al., 2020) 

IR: instant release, HPMC: hydroxypropyl methylcellulose, PCL: Polycaprolactone, PLLA: Poly (-L) Lactic Acid, PE: polyethylene, HDPE: high density polyethylene, 

PEO: polyethylene oxide, EC: ethylcellulose. 

 516 
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7.4.1 Orally-disintegrating Printlets 517 

SLS is capable of forming 3D objects solely by loosely binding powder particles on the 518 

surface, resulting in very porous and fast-dissolving Printlets. Due to the absence of 519 

compression forces, the Printlets are highly porous. As such, once dispersed in water, 520 

the water molecules quickly penetrate into the Printlets, leading to their rapid 521 

disintegration. This effect is intensified by increasing the laser scanning speed used 522 

for sintering. This decreases the contact time between the laser beam and powder 523 

bed surface and yields Printlets with acceptable mechanical properties and rapid 524 

disintegration times. On this basis, Printlets incorporating Kollidon VA64, a 525 

vinylpyrrolidone-vinyl acetate copolymer, were fabricated (Figure 4A and B). The 526 

disintegration times of the Printlets made of identical compositions varied from >600 527 

s, when printed at a laser scanning speed of 100 mm/s, all the way to 15 and 4 s, when 528 

printed at a laser scanning speeds of 200 and 300 mm/s, respectively (Allahham et 529 

al., 2020; Fina et al., 2018c). As a result, the Printlets fabricated at 100 mm/s required 530 

1 h for the complete drug dissolution, whereas those printed at 200 and 300 mm/s 531 

achieved a complete drug release within 5 min (Figure 4C).  532 

 533 

 534 

Insert Figure 4 535 

 536 

Figure 4. Images of the (A) ondansetron and (B) paracetamol orally disintegrating 537 

Printlets fabricated using Kollidon VA64. (C) In vitro drug dissolution profiles from the 538 

paracetamol Printlets fabricated at different laser scanning speeds. Scale shown in 539 

cm. Reprinted with permissions from (Allahham et al., 2020; Fina et al., 2018c). 540 

 541 
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In another study, 30% diclofenac sodium was incorporated into the formulation, 542 

reducing the disintegration rate and changing the mechanical properties of the 543 

Printlets (Barakh Ali et al., 2019). This required the addition of lactose monohydrate to 544 

help modulate the mechanical characteristics and disintegration time of the Printlets. 545 

The partial least squares (PLS) concentration images of the Printlets displayed a 546 

uniformity in colour, indicating that the drug is uniformly distributed within Printlets 547 

(Figure 5).  548 

 549 

Insert Figure 5 550 

 551 

Figure 5. Partial least squares (PLS) concentration images of different Printlets, 552 

showing the distribution of the drug within the Printlets. Red and blue pixel in the PLS 553 

concentration image refer to the low and high drug concentration, respectively. 554 

Reprinted with permission from (Barakh Ali et al., 2019). 555 

 556 

7.4.2 Immediate-release Printlets 557 

By selecting a polymer with immediate-release properties, it is possible to produce 558 

Printlets with instant release characteristics. An example is Kollicoat IR, which exhibits 559 

a pH-independent profile (Fina et al., 2017).  The Printlets can be fabricated to include 560 

various drug loading percentages, ranging between 5% to 35%, all of which are 561 

prepared under the same printing conditions (e.g. temperature and laser scanning 562 

speed) (Figure 6A). Depending on the amount of drug, the Printlets tend to have 563 

different energy absorption, and thus different release behaviours. The higher the drug 564 

loading, the higher was the absorption and the slower the release characteristics. As 565 

a result, Printlets with 5% drug loading attained a complete drug release within 2 h, 566 
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whereas those with 35% drug loading required 8 h (Figure 6B). It should be noted 567 

though, this effect might change depending on the drug substance and the 568 

composition of printing mixture. Similarly, immediate release Printlets were fabricated 569 

using HPMC at varying laser scanning speeds, including 100, 200 and 300 mm/s 570 

(Figure 6C) (Fina et al., 2018c). The Printlets disintegrated within >600 s and achieved 571 

a complete drug release within 4 h, 3 h and 2 h, respectively (Figure 6D).  572 

 573 

Insert Figure 6 574 

 575 

Figure 6. (A) Images and (B) in vitro drug of the Kollicoat IR Printlets. (C) Images and 576 

(D) in vitro drug of the HPMC Printlets. Scale shown in cm. Reprinted with permissions 577 

from (Fina et al., 2017; Fina et al., 2018c) 578 

 579 

7.4.3 Controlled-release Printlets 580 

SLS has the potential to create structures with predetermined porous microstructures 581 

and dense walls. In doing so, it is possible to design controlled-release systems with 582 

zero-order kinetics. More specifically, it is possible to create cylindrical Printlets with 583 

dense outer regions, which act as diffusion barriers, and porous cores enabling high 584 

drug loading. In one study, both PCL and PLLA were shown to have suitable 585 

characteristics with densities and porosities which were a function of laser power, 586 

scanning speed and powder bed temperature (Figure 7A) (Leong et al., 2006). In 587 

another approach, Eudragit L100-55, which is a pH-dependent polymer, was 588 

incorporated to impart prolonged-release properties (Fina et al., 2017). The Printlets 589 

were formulated to include different drug loadings, including 5%, 20% and 35% w/w 590 

(Figure 7B). In the first 2 h, the Printlets displayed limited drug release (< 20%) in an 591 
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acidic medium (Figure 7C). Once under intestinal conditions, the Printlets exhibited an 592 

increase in the drug release, with complete drug release within 12 h. Interestingly, the 593 

drug release was independent of the drug loading. 594 

 595 

Insert Figure 7 596 

 597 

Figure 7. Images of the (A) PCL and PLLA and (B) Eudragit L100-55 cylindrical 598 

Printlets. (C) In vitro drug dissolution profiles from the Eudragit L100-55 Printlets with 599 

varying drug loadings. Scale shown in cm. Reprinted with permissions from (Fina et 600 

al., 2017; Leong et al., 2006). 601 

 602 

7.4.4 Multi-reservoir systems 603 

Due to the high resolution of the laser beam, SLS can be utilised for the fabrication of 604 

complex and precise objects, such as multi-reservoir systems, enabling controlled 605 

drug delivery (Salmoria et al., 2013b). The systems are designed to contain a PCL 606 

shell and a vacant core, and the device can be fabricated to contain the drug in both 607 

reservoirs or solely within the core. By varying the content of the reservoirs, different 608 

progesterone release patterns, extending up to 290 days, were achieved (Salmoria et 609 

al., 2012c).  610 

 611 

7.4.5 Implants for tissue and bone regeneration 612 

PCL implants incorporating ibuprofen have been exploited for tissue and bone 613 

regeneration (Salmoria et al., 2016). It was shown that the addition of ibuprofen 614 

increased the intensity of sintering. This resulted in an increase in the flexural modulus, 615 

wherein approximately 75% of the drug was released within 26 h. Likewise, 5-616 
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fluorouracil implantable systems composed of either a PE (Salmoria et al., 2017b) or 617 

PCL (Salmoria et al., 2017c) matrix were fabricated for cancer therapy. Both systems 618 

showed an initial drug release burst followed by sustained delivery, wherein the PE 619 

implants had longer-lasting effect. By combining these concepts within a single device, 620 

dual drug therapy systems could be created.  621 

 622 

7.4.6 Complex and multi-layered systems 623 

Loose powder particles within the printing platform act as raft structures capable of 624 

maintaining the integrity of structures during the printing process. This permits the 625 

fabrication of intricate drug-loaded dosage forms, which are otherwise complex or 626 

impossible to produce using conventional methods. For instance, it is possible to 627 

produce gyroid lattice Printlets, enabling higher control over drug release (Fina et al., 628 

2018b). Due to their mesh-like structure, these lattices have shown faster drug release 629 

when compared with their corresponding cylindrical Printlets (Figure 8A and C). By 630 

engineering different arrangements of both configurations and creating bi-layer 631 

Printlets, it is possible to tune the drug release to achieve the intended release kinetics 632 

(Figure 8B and D).  633 

 634 

Insert Figure 8 635 

 636 

Figure 8. 3D designs of the (A) gyroid lattice and (B) bi-layer Printlets and images of 637 

the (C) gyroid lattice and (D) bi-layer Printlets. Scale shown in cm. Reprinted with 638 

permission from (Fina et al., 2018b). 639 

 640 
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In the same vein, SLS 3D printing can be exploited to prepare paracetamol 641 

miniprintlets (e.g. 3D printed pellets) for personalised therapy (Figure 9A) (Awad et al., 642 

2019). Typically, controlled-release multiparticulate systems are produced using 643 

extrusion-spheronisation and coating, which are multi-step processes requiring 644 

dedicated equipment, making them laborious to produce and expensive (Ghebre-645 

Sellassie and Knoch, 2007). On the contrary, SLS 3D printing is a single process, 646 

and the strong coherence between the drug and polymer particles induces a sustained 647 

effect which moderates the initial burst release (Figure 9C). Via the manipulation of 648 

the matrix content, dual miniprintlets incorporating two spatially separated drugs, 649 

paracetamol and ibuprofen, were also fabricated (Figure 9B). Despite their small and 650 

intricate structures, the dual miniprintlets could be programmed to have varying 651 

release profiles for each drug substance, providing a novel platform for multi-drug 652 

therapy. Compared with monolithic dosage forms, the risks of dose-dumping and peak 653 

plasma fluctuations are curtailed with this multiparticulate system, because each 654 

miniprintlet behaves as a discrete drug depot.  As such, these miniaturised dosage 655 

forms could be programmed to maximise treatment by providing the benefits of 656 

convenient dosing and longer lasting therapy.  657 

 658 

Insert Figure 9 659 

  660 

Figure 9. Images of a (A) single miniprintlet and (B) dual miniprintlet. (C) In vitro drug 661 

dissolution profiles from the paracetamol single miniprintlets with varying diameters. 662 

Reprinted with permission from (Awad et al., 2019). 663 

 664 

7.4.7 Intrauterine devices 665 
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Due to the ability of SLS to overcome geometry limitations imposed by conventional 666 

manufacturing techniques, this has paved the way for SLS to be an attractive approach 667 

for the fabrication of intrauterine devices containing two distinct drugs, progesterone 668 

and 5-fluorouracil, having synergistic activities in the treatment of endometrial and 669 

ovarian cancers (Figure 10A) (Salmoria et al., 2018). The devices were made of 670 

HDPE, due to its biocompatibility, inertness and mechanical flexibility. The devices 671 

were fabricated using two different laser powers, 3 W and 5 W. 5-fluorouracil showed 672 

an initial burst release within the first hour, attributed to its high water solubility (Figure 673 

10B). This was followed by its sustained release over a period of more than 35 days. 674 

The drug release from the devices fabricated using a laser power of 3 W was higher 675 

than that of those fabricated at a laser power of 5 W, which was believed to be due to 676 

the higher porosity of the former, expediting the drug diffusion. Progesterone on the 677 

other hand, displayed zero-order kinetics throughout the dissolution studies. 678 

 679 

Insert Figure 10 680 

 681 

Figure 10. (A) Image of the intrauterine device fabricated using SLS and (B) in vitro 682 

drug dissolution release profiles of 5-fluorouracil and progesterone from intrauterine 683 

devices fabricated using 3W and 5W laser powers. Reprinted with permission from 684 

(Salmoria et al., 2018). 685 

 686 

7.4.8 Printlets for the visually-impaired 687 

Whilst a clear trend towards tailored doses remains the predominant focus of most 3D 688 

printing technologies, a range of other opportunities remain underexplored. As an 689 

example, the distinctive laser features of SLS 3D printing can provide a novel and 690 
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sophisticated approach for making dosage forms suited for specific patient groups, 691 

such as those with visual impairment. In particular, orally disintegrating Printlets have 692 

been designed with Braille (Figure 11A) and Moon patterns on their surfaces, enabling 693 

patients to identify medications when taken out of their original packaging (Awad et 694 

al., 2020). With all the Printlets disintegrating within ~5 s, they avoid the need for water 695 

and thus facilitate self-administration of medications (Figure 11B).  696 

 697 

Additionally, Printlets with novel shapes, including a sun, a moon, a heart, a caplet 698 

shape, a pentagon and a square, were fabricated (Figure 11C). These shapes offer 699 

additional medication information to the patients, such as medication indication and/or 700 

dosing regimen. For instance, a caplet shape could represent paracetamol simply 701 

because several commercialised paracetamol products are sold in this form. Similarly, 702 

a heart shape could represent cardiovascular medications because of its resemblance 703 

of the organ of treatment. Sun and moon shapes could be indicative of morning and 704 

evening dosing, respectively. Furthermore, the number of edges in the pentagon and 705 

square shapes could be utilised to correspond to the time of medicine intake. A caplet 706 

containing three Braille letters can be designed, further extending the possibilities with 707 

this technology and showing that three-letter abbreviations could be printed onto 708 

bigger-sized formulations (Figure 11D). As an example, PAR could be used as an 709 

abbreviation for paracetamol. Overall, this reduces medication errors and improves 710 

medication adherence in patients with visual impairment. 711 

 712 

Insert Figure 11 713 

 714 
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Figure 11. (A) 3D designs of cylindrical Printlets containing the 26 Braille alphabets. 715 

Images of cylindrical Printlets containing the 26 (B) Braille alphabets, (C) Printlets with 716 

different shapes having Braille or Moon patterns and (D) Printlet with three Braille 717 

letters, including (from left to right): P, A, and R. Reprinted with permission from (Awad 718 

et al., 2020). 719 

 720 

7.5. Undesirable pitfalls 721 

One of the main disadvantages of SLS lies in its effect on laser-sensitive substances, 722 

in particular natural polymers and drugs (Vail et al., 1996; Walker and Santoro, 2017). 723 

As such, posing restrictions on the suitability of materials and drugs. Furthermore, in 724 

terms of technical aspects, to ensure consistent layer height and suitable flow of 725 

powders, the printing requires large quantities of powder, which might not be feasible 726 

in all cases (Telenko and Seepersad, 2010). This is particularly important in the case 727 

of expensive drugs or those with limited quantities. In addition, whilst any unsintered 728 

powders can be recycled, they can only be reused for a limited number of prints due 729 

to concerns relating to chemical stability and physical changes (Dotchev and Yusoff, 730 

2009). As such, with the need for large quantities of powder, part of the material might 731 

go to waste if the process is not optimised. Similarly, as the process sometimes might 732 

require post-treatment (e.g. the sieving and brushing of printed dosage forms), it may 733 

need an extra time-consuming step and impart additional costs (Thomas and Gilbert, 734 

2014).  735 

 736 

7.6. Regulatory aspects 737 

Currently, commercial SLS printers do not comply with Good Manufacturing Practice 738 

(GMP) specifications and thus it is not possible to make dosage forms within a clinical 739 
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setting. This brings about technical and logistical challenges, making it burdensome 740 

to ensure batch-to-batch uniformity and end-product consistency, requiring in-process 741 

quality control (QC) measures.  742 

 743 

Several advancements have been made to bring this technology a step closer to the 744 

clinic. For instance, the use of process analytical technologies (PAT), such as near 745 

infrared spectroscopy (NIR) and Raman confocal microscopy, as QC measures have 746 

been assessed on SLS Printlets. A rapid ‘point-and-shoot’ method has been 747 

successfully validated for use as non-destructive approach for dose verification 748 

(Trenfield et al., 2018b). The method was based on Raman confocal microscopy and 749 

was applicable for dosage forms having different geometries. It has also shown 750 

favourable results in the presence of multiple drug agents (Trenfield et al., 2020). In 751 

this approach a portable near infrared (NIR) spectrometer was employed and validated 752 

calibration models were developed using partial least squares (PLS) regression. 753 

Another technique could involve the use of NIR hyperspectral imaging for the 754 

quantification of drugs within the Printlets and assessing their spatial distribution (Vakili 755 

et al., 2015). Collectively, these findings further facilitate and support the integration 756 

of SLS 3D printing within practice, providing suitable solutions to some of the existing 757 

QC challenges. 758 
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8.0. Conclusion 759 

Since its introduction, 3D printing has been forecast to pave the way for a new 760 

pharmaceutical revolution. Of all the 3D printing techniques, SLS is the most capable 761 

of being scaled up for mass production and with its starting materials holding the 762 

closest resemblance to current pharmaceutical production technologies, it is 763 

potentially highly amenable for adoption as a novel and versatile manufacturing tool 764 

for pharmaceutical fabrication. Due to the high resolution of its laser beam, SLS 765 

enables the engineering of intricate and delicate dosage forms that could be tailored 766 

to meet the needs of certain patient groups. Unlike other technologies, complex 767 

dosage forms can be attained without the need for additional support material or 768 

processes. Whilst technical and QC restraints have been the principal hinderance for 769 

the adoption of such innovative technologies, preliminary results appear promising.  770 

 771 
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