380 research outputs found

    Anisotropic magnetoresistance in a 2DEG in a quasi-random magnetic field

    Full text link
    We present magnetotransport results for a 2D electron gas (2DEG) subject to the quasi-random magnetic field produced by randomly positioned sub-micron Co dots deposited onto the surface of a GaAs/AlGaAs heterostructure. We observe strong local and non-local anisotropic magnetoresistance for external magnetic fields in the plane of the 2DEG. Monte-Carlo calculations confirm that this is due to the changing topology of the quasi-random magnetic field in which electrons are guided predominantly along contours of zero magnetic field.Comment: 4 pages, 6 figures, submitted to Phys. Rev.

    Fano effect and Kondo effect in quantum dots formed in strongly coupled quantum wells

    Full text link
    We present lateral transport measurements on strongly, vertically coupled quantum dots formed in separate quantum wells in a GaAs/AlGaAs heterostructure. Coulomb oscillations are observed forming a honeycomb lattice consistent with two strongly coupled dots. When the tunnel barriers in the upper well are reduced we observe the Fano effect due to the interfering paths through a resonant state in the lower well and a continuum state in the upper well. In both regimes an in plane magnetic field reduces the coupling between the wells when the magnetic length is comparable to the center to center separation of the wells. We also observe the Kondo effect which allows the spin states of the double dot system to be probed.Comment: 4 pages, 5 figure

    Suppression of Dynamically Induced Stochastic Magnetic Behaviour through Materials Engineering

    Get PDF
    tochastic behavior fundamentally limits the performance and reliability of nanomagnetic devices. Typically, stochastic behavior is assumed to be the result of simple thermal activation, but it may also be “dynamically induced,” i.e., a direct result of the spatial and temporal complexity of magnetization dynamics. Here, we show how materials engineering can be used to comprehensively suppress dynamically induced stochasticity. Using the dynamics of magnetic domain walls in Ni80Fe20 nanowires as a case study, we show how manipulation of the Gilbert damping constant via doping with the rare-earth-element terbium dramatically simplifies domain-wall dynamics. This allows us to obtain quasi-deterministic behaviors from systems that nominally exhibit exceptionally high levels of stochasticity

    Spin-dependent phenomena and device concepts explored in (Ga,Mn)As

    Full text link
    Over the past two decades, the research of (Ga,Mn)As has led to a deeper understanding of relativistic spin-dependent phenomena in magnetic systems. It has also led to discoveries of new effects and demonstrations of unprecedented functionalities of experimental spintronic devices with general applicability to a wide range of materials. In this article we review the basic material properties that make (Ga,Mn)As a favorable test-bed system for spintronics research and discuss contributions of (Ga,Mn)As studies in the general context of the spin-dependent phenomena and device concepts. Special focus is on the spin-orbit coupling induced effects and the reviewed topics include the interaction of spin with electrical current, light, and heat.Comment: 47 pages, 41 figure

    Control of Coercivities in (Ga,Mn)As Thin Films by Small Concentrations of MnAs Nanoclusters

    Full text link
    We demonstrate that low concentrations of a secondary magnetic phase in (Ga,Mn)As thin films can enhance the coercivity by factors up to ~100 without significantly degrading the Curie temperature or saturation magnetisation. Magnetic measurements indicate that the secondary phase consists of MnAs nanoclusters, of average size ~7nm. This approach to controlling the coercivity while maintaining high Curie temperature, may be important for realizing ferromagnetic semiconductor based devices.Comment: 8 pages,4 figures. accepted for publication in Appl. Phys. Let
    corecore