40 research outputs found

    SWIPT in MISO full-duplex systems

    Get PDF
    This paper investigates a multiuser multiple-input singleoutput (MISO) full-duplex (FD) system for simultaneous wireless information and power transfer (SWIPT), in which a multiantenna base station (BS) simultaneously sends wirelessly information and power to a set of single-antenna mobile stations (MSs) using power splitters (PSs) in the downlink and receives information in the uplink in FD mode. In particular, we address the joint design of the receive PS ratio and the transmit power at the MSs, and the beamforming matrix at the BS under signal-to-interferenceplus- noise ratio (SINR) and the harvested power constraints. Using semidefinite relaxation (SDR), we obtain the solution to the problem with imperfect channel state information (CSI) of the selfinterfering channels. Furthermore, we propose another suboptimal zero-forcing (ZF) based solution by separating the optimization of the transmit beamforming vector and the PS ratio. Simulation results are provided to evaluate the performance of the proposed beamforming designs

    SCP4-STK35/PDIK1L complex is a dual phospho-catalytic signaling dependency in acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia (AML) cells rely on phospho-signaling pathways to gain unlimited proliferation potential. Here, we use domain-focused CRISPR screening and identify the nuclear phosphatase SCP4 as a dependency in AML, yet this enzyme is dispensable in normal hematopoietic progenitor cells. Using CRISPR exon scanning and gene complementation assays, we show that the catalytic function of SCP4 is essential in AML. Through mass spectrometry analysis of affinity-purified complexes, we identify the kinase paralogs STK35 and PDIK1L as binding partners and substrates of the SCP4 phosphatase domain. We show that STK35 and PDIK1L function catalytically and redundantly in the same pathway as SCP4 to maintain AML proliferation and to support amino acid biosynthesis and transport. We provide evidence that SCP4 regulates STK35/PDIK1L through two distinct mechanisms: catalytic removal of inhibitory phosphorylation and by promoting kinase stability. Our findings reveal a phosphatase-kinase signaling complex that supports the pathogenesis of AML

    Genetic and Antigenic Characterization of an Influenza A(H3N2) Outbreak in Cambodia and the Greater Mekong Subregion during the COVID-19 Pandemic, 2020

    Get PDF
    Introduction of non-pharmaceutical interventions to control COVID-19 in early 2020 coincided with a global decrease in active influenza circulation. However, between July and November 2020, an influenza A(H3N2) epidemic occurred in Cambodia and in other neighboring countries in the Greater Mekong Subregion in Southeast Asia. We characterized the genetic and antigenic evolution of A(H3N2) in Cambodia and found that the 2020 epidemic comprised genetically and antigenically similar viruses of Clade3C2a1b/131K/94N, but they were distinct from the WHO recommended influenza A(H3N2) vaccine virus components for 2020-2021 Northern Hemisphere season. Phylogenetic analysis revealed multiple virus migration events between Cambodia and bordering countries, with Laos PDR and Vietnam also reporting similar A(H3N2) epidemics immediately following the Cambodia outbreak: however, there was limited circulation of these viruses elsewhere globally. In February 2021, a virus from the Cambodian outbreak was recommended by WHO as the prototype virus for inclusion in the 2021-2022 Northern Hemisphere influenza vaccine. IMPORTANCE The 2019 coronavirus disease (COVID-19) pandemic has significantly altered the circulation patterns of respiratory diseases worldwide and disrupted continued surveillance in many countries. Introduction of control measures in early 2020 against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection has resulted in a remarkable reduction in the circulation of many respiratory diseases. Influenza activity has remained at historically low levels globally since March 2020, even when increased influenza testing was performed in some countries. Maintenance of the influenza surveillance system in Cambodia in 2020 allowed for the detection and response to an influenza A(H3N2) outbreak in late 2020, resulting in the inclusion of this virus in the 2021-2022 Northern Hemisphere influenza vaccine

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Gait Variability to Phenotype Common Orthopedic Gait Impairments Using Wearable Sensors

    No full text
    Mobility impairments are a common symptom of age-related degenerative diseases. Gait features can discriminate those with mobility disorders from healthy individuals, yet phenotyping specific pathologies remains challenging. This study aims to identify if gait parameters derived from two foot-mounted inertial measurement units (IMU) during the 6 min walk test (6MWT) can phenotype mobility impairment from different pathologies (Lumbar spinal stenosis (LSS)—neurogenic diseases, and knee osteoarthritis (KOA)—structural joint disease). Bilateral foot-mounted IMU data during the 6MWT were collected from patients with LSS and KOA and matched healthy controls (N = 30, 10 for each group). Eleven gait parameters representing four domains (pace, rhythm, asymmetry, variability) were derived for each minute of the 6MWT. In the entire 6MWT, gait parameters in all four domains distinguished between controls and both disease groups; however, the disease groups demonstrated no statistical differences, with a trend toward higher stride length variability in the LSS group (p = 0.057). Additional minute-by-minute comparisons identified stride length variability as a statistically significant marker between disease groups during the middle portion of 6WMT (3rd min: p ≤ 0.05; 4th min: p = 0.06). These findings demonstrate that gait variability measures are a potential biomarker to phenotype mobility impairment from different pathologies. Increased gait variability indicates loss of gait rhythmicity, a common feature in neurologic impairment of locomotor control, thus reflecting the underlying mechanism for the gait impairment in LSS. Findings from this work also identify the middle portion of the 6MWT as a potential window to detect subtle gait differences between individuals with different origins of gait impairment

    High-temperature nanoindentation size effect in fluorite material

    No full text
    10.1016/j.ijmecsci.2019.06.020International Journal of Mechanical Sciences159459-46

    as-PSOCT: Volumetric microscopic imaging of human brain architecture and connectivity.

    Full text link
    Published in final edited form as: Neuroimage. 2018 January 15; 165: 56–68. doi:10.1016/j.neuroimage.2017.10.012.Polarization sensitive optical coherence tomography (PSOCT) with serial sectioning has enabled the investigation of 3D structures in mouse and human brain tissue samples. By using intrinsic optical properties of back-scattering and birefringence, PSOCT reliably images cytoarchitecture, myeloarchitecture and fiber orientations. In this study, we developed a fully automatic serial sectioning polarization sensitive optical coherence tomography (as-PSOCT) system to enable volumetric reconstruction of human brain samples with unprecedented sample size and resolution. The 3.5 μm in-plane resolution and 50 μm through-plane voxel size allow inspection of cortical layers that are a single-cell in width, as well as small crossing fibers. We show the abilities of as-PSOCT in quantifying layer thicknesses of the cerebellar cortex and creating microscopic tractography of intricate fiber networks in the subcortical nuclei and internal capsule regions, all based on volumetric reconstructions. as-PSOCT provides a viable tool for studying quantitative cytoarchitecture and myeloarchitecture and mapping connectivity with microscopic resolution in the human brain.U01 MH093765 - NIMH NIH HHS; R01 NS070963 - NINDS NIH HHS; U01 NS086625 - NINDS NIH HHS; R21 EB018907 - NIBIB NIH HHS; R01 AG016495 - NIA NIH HHS; S10 RR019307 - NCRR NIH HHS; R01 NS052585 - NINDS NIH HHS; R01 AG008122 - NIA NIH HHS; R01 AG049899 - NIA NIH HHS; R01 EB019956 - NIBIB NIH HHS; R21 NS072652 - NINDS NIH HHS; P01 NS055104 - NINDS NIH HHS; S10 RR023043 - NCRR NIH HHS; K01 DK101631 - NIDDK NIH HHS; R01 EB006758 - NIBIB NIH HHS; P41 EB015896 - NIBIB NIH HHS; R01 NS083534 - NINDS NIH HHS; S10 RR023401 - NCRR NIH HHShttps://www.ncbi.nlm.nih.gov/pubmed/29017866https://www.ncbi.nlm.nih.gov/pubmed/29017866Accepted manuscrip

    SWIPT in MISO full-duplex systems

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper investigates a multiuser multiple-input singleoutput (MISO) full-duplex (FD) system for simultaneous wireless information and power transfer (SWIPT), in which a multiantenna base station (BS) simultaneously sends wirelessly information and power to a set of single-antenna mobile stations (MSs) using power splitters (PSs) in the downlink and receives information in the uplink in FD mode. In particular, we address the joint design of the receive PS ratio and the transmit power at the MSs, and the beamforming matrix at the BS under signal-to-interferenceplus- noise ratio (SINR) and the harvested power constraints. Using semidefinite relaxation (SDR), we obtain the solution to the problem with imperfect channel state information (CSI) of the selfinterfering channels. Furthermore, we propose another suboptimal zero-forcing (ZF) based solution by separating the optimization of the transmit beamforming vector and the PS ratio. Simulation results are provided to evaluate the performance of the proposed beamforming designs
    corecore