226 research outputs found

    Effective calculation of LEED intensities using symmetry-adapted functions

    Get PDF
    The calculation of LEED intensities in a spherical-wave representation can be substantially simplified by symmetry relations. The wave field around each atom is expanded in symmetry-adapted functions where the local point symmetry of the atomic site applies. For overlayer systems with more than one atom per unit cell symmetry-adapted functions can be used when the division of the crystal into monoatomic subplanes is replaced by division into subplanes containing all symmetrically equivalent atomic positions

    Postanoxic electrographic status epilepticus and serum biomarkers of brain injury

    Get PDF
    AIM: To explore if electrographic status epilepticus (ESE) after cardiac arrest causes additional secondary brain injury reflected by serum levels of two novel biomarkers of brain injury: neurofilament light chain (NfL) originating from neurons and glial fibrillary acidic protein (GFAP) from glial cells. METHODS: Simplified continuous EEG (cEEG) and serum levels of NfL and GFAP, sampled at 24, 48 and 72 h after cardiac arrest, were collected during the Target Temperature Management (TTM)-trial. Two statistical methods were used: multivariable regresssion analysis; and a matched control group of patients without ESE matched for early predictors of poor neurological outcome. RESULTS: 128 patients had available biomarkers and cEEG. Twenty-six (20%) patients developed ESE, the majority (69%) within 24 h. ESE was an independent predictor of elevated serum NfL (p < 0.001) but not of serum GFAP (p = 0.16) at 72 h after cardiac arrest. Compared to a control group matched for early predictors of poor neurological outcome, patients who developed ESE had higher levels of serum NfL (p = 0.03) and GFAP (p = 0.04) at 72 h after cardiac arrest. CONCLUSION: ESE after cardiac arrest is associated with higher levels of serum NfL which may suggest increased secondary neuronal injury compared to matched patients without ESE but similar initial brain injury. Associations with GFAP reflecting glial injury are less clear. The study design cannot exclude imperfect matching or other mechanisms of secondary brain injury contributing to the higher levels of biomarkers of brain injury seen in the patients with ESE

    Serial soluble neurofilament heavy chain in plasma as a marker of brain injury after cardiac arrest

    Get PDF
    ABSTRACT: INTRODUCTION: Induced hypothermia has been shown to improve outcome after cardiac arrest, but early prognostication is hampered by the need for sedation. Here we tested whether a biomarker for neurodegeneration, the neurofilament heavy chain (NfH), may improve diagnostic accuracy in the first days after cardiac arrest. METHODS: This prospective study included 90 consecutive patients treated with hypothermia after cardiac arrest. Plasma levels of phosphorylated NfH (SMI35) were quantified using standard ELISA over a period of 72 h after cardiac arrest. The primary outcome was the dichotomized Cerebral Performance Categories scale (CPC). A best CPC 1-2 during 6 months follow-up was considered a good outcome, a best CPC of 3-4 a poor outcome. Receiver operator characteristics and area under the curve were calculated. RESULTS: The median age of the patients was 65 years, and 63 (70%) were male. A cardiac aetiology was identified in 62 cases (69%). 77 patients (86%) had out-of-hospital cardiac arrest. The outcome was good in 48 and poor in 42 patients. Plasma NfH levels were significantly higher 2 and 36 hours after cardiac arrest in patients with poor outcome (median 0.28 ng/mL and 0.5 ng/mL, respectively) compared to those with good outcome (0 ng/mL, p = 0.016, p < 0.005, respectively). The respective AUC were 0.72 and 0.71. CONCLUSIONS: Plasma NfH levels correlate to neurological prognosis following cardiac arrest. In this study, 15 patients had neurological co-morbidities and there was a considerable overlap of data. As such, neurofilament should not be used for routine neuroprognostication until more data are available

    Spin Motion in Electron Transmission through Ultrathin Ferromagnetic Films Accessed by Photoelectron Spectroscopy

    Full text link
    Ab initio and model calculations demonstrate that the spin motion of electrons transmitted through ferromagnetic films can be analyzed in detail by means of angle- and spin-resolved core-level photoelectron spectroscopy. The spin motion appears as precession of the photoelectron spin polarization around and as relaxation towards the magnetization direction. In a systematic study for ultrathin Fe films on Pd(001) we elucidate its dependence on the Fe film thickness and on the Fe electronic structure. In addition to elastic and inelastic scattering, the effect of band gaps on the spin motion is addressed in particular.Comment: 4 pages, 5 figure

    Origin of the photoemission final-state effects in Bi2Sr2CaCu2O8 by very-low-energy electron diffraction

    Full text link
    Very-low-energy electron diffraction with a support of full-potential band calculations is used to achieve the energy positions, K// dispersions, lifetimes and Fourier compositions of the photoemission final states in Bi2Sr2CaCu2O8 at low excitation energies. Highly structured final states explain the dramatic matrix element effects in photoemission. Intense c(2x2) diffraction reveals a significant extrinsic contribution to the shadow Fermi surface. The final-state diffraction effects can be utilized to tune the photoemission experiment on specific valence states or Fermi surface replicas.Comment: 4 pages, 3 Postscript figures, submitted to Phys. Rev. Lett; major revision

    Dynamic image potential at an Al(111) surface

    Get PDF
    We evaluate the electronic self-energy Sigma(E) at an Al(111) surface using the GW space-time method. This self-energy automatically includes the image potential V-im not present in any local-density approximation for exchange and correlation. We solve the energy-dependent quasiparticle equations and calculate the effective local potential experienced by electrons in the near-surface region. The relative contribution of exchange proves to be very different for states above the Fermi level. The image-plane position for interacting electrons is closer to the surface than for the purely electrostatic effects felt by test charges, and, like its classical counterpart, is drawn inwards by the effects of atomic structure

    Manifestations of Broken Symmetry: The Surface Phases of Ca(2-x)Sr(x)RuO4

    Full text link
    The surface structural phases of Ca(2-x)Sr(x)RuO(4) are investigated using quantitative Low Energy Electron Diffraction. The broken symmetry at the surface enhances the structural instability against the RuO6 rotational distortion while diminishing the instability against the RuO6 tilt distortion occurring within the bulk crystal. As a result, suppressed structural and electronic surface phase transition temperatures are observed, including the appearance of an inherent Mott metal-to-insulator transition for x = 0.1 and possible modifications of the surface quantum critical point near xc ~ 0.5.Comment: 4 pages, 4 figure

    Steam reforming on transition-metal carbides from density-functional theory

    Full text link
    A screening study of the steam reforming reaction (CH_4 + H_2O -> CO + 3H_2) on early transition-metal carbides (TMC's) is performed by means of density-functional theory calculations. The set of considered surfaces includes the alpha-Mo_2C(100) surfaces, the low-index (111) and (100) surfaces of TiC, VC, and delta-MoC, and the oxygenated alpha-Mo_2C(100) and TMC(111) surfaces. It is found that carbides provide a wide spectrum of reactivities towards the steam reforming reaction, from too reactive via suitable to too inert. The reactivity is discussed in terms of the electronic structure of the clean surfaces. Two surfaces, the delta-MoC(100) and the oxygen passivated alpha-Mo_2C(100) surfaces, are identified as promising steam reforming catalysts. These findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.Comment: 6 pages, 4 figure

    Science and society in education

    Get PDF
    This booklet is for teachers who want to expand their teaching approaches to include socio-scientific issues which enrich and give meaning to core scientific principles. It is meant to enhance young people’s curiosity about the social and scientific world and raise important questions about issues which affect their lives. We call this approach Socio-Scientific Inquiry-Based Learning, or ‘SSIBL’ for short. Chapters 1 and 2 present an introduction to the theoretical background of SSIBL. In chapter 3, SSIBL will be approached from a classroom perspective, providing a simplified version of the framework and showing teaching examples

    Bias-voltage dependence of the magneto-resistance in ballistic vacuum tunneling: Theory and application to planar Co(0001) junctions

    Full text link
    Motivated by first-principles results for jellium and by surface-barrier shapes that are typically used in electron spectroscopies, the bias voltage in ballistic vacuum tunneling is treated in a heuristic manner. The presented approach leads in particular to a parameterization of the tunnel-barrier shape, while retaining a first-principles description of the electrodes. The proposed tunnel barriers are applied to Co(0001) planar tunnel junctions. Besides discussing main aspects of the present scheme, we focus in particular on the absence of the zero-bias anomaly in vacuum tunneling.Comment: 19 pages with 8 figure
    • …
    corecore