1,913 research outputs found

    Definition study for temperature control in advanced protein crystal growth

    Get PDF
    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules

    Convective flow effects on protein crystal growth

    Get PDF
    A high-resolution microscopic interferometric setup for the monitoring of protein morphologies has been developed. Growth or dissolution of a crystal can be resolved with a long-term depth resolution of 200 A and a lateral resolution of 2 microns. This capability of simultaneously monitoring the interfacial displacement with high local depth resolution has yielded several novel results. We have found with lysozyme that (1) the normal growth rate is oscillatory, and (2) depending on the impurity content of the solution, the growth step density is either greater or lower at the periphery of a facet than in its center. The repartitioning of Na plus and Cl minus ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed, to interpret the large body of data in unified way. The results strongly suggest that (1) the ion to lysozyne ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter electron microscopy results appear to confirm this finding, which could have far-reaching consequences for x-ray diffraction studies. A computational model for diffusive-convective transport in protein crystallization has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies and our kinetics data for the growth of lysozyme. The results show that even in the small cell employed, protein concentration nonuniformities and gravity-driven solutal convection can be significant. The calculated convection velocities are of the same order to magnitude as those found in earlier experiments. As expected, convective transport, i.e., at Og, lysozyme crystal growth remains kinetically limited. The salt distribution in the crystal is predicted to be non-uniform at both 1g and 0g, as a consequence of protein depletion in the solution. Static and dynamic light scattering studies in undersaturated and supersaturated solutions have been performed. Diffusivities in undersaturated solutions, were found to vary with lysozyme concentrations. Depending on the salt concentration, the diffusivities either increase or decrease. Interestingly, the corresponding static scattering intensities behave oppositely, Our current analysis indicates that these changes are inconsistent with aggregation in undersaturated solutions. However, the data are compatible with concentration-dependent changes of the interactions between protein and salt

    Convective flow effects on protein crystal growth

    Get PDF
    The long-term stability of the interferometric setup for the monitoring of protein morphologies has been improved. Growth or dissolution of a crystal on a 100 A scale can now be clearly distinguished from dimensional changes occurring within the optical path of the interferometer. This capability of simultaneously monitoring the local interfacial displacement at several widely-spaced positions on the crystal surface with high local depth resolution, has already yielded novel results. We found with lysozyme that (1) the normal growth rate is oscillatory, and (2) the mean growth step density is greater at the periphery of a facet than in its center. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed to interpret the large body of data in a unified way. The results strongly suggests that (1) the ion to lysozyme ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter on the order of 10 microns. The computational model for diffusive-convective transport in protein crystallization (see the First Report) has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies. These results show that some elements of a moving boundary problem must be incorporated into the model in order to obtain a more realistic description. Our experimental setup for light scattering investigations of aggregation and nucleation in protein solutions has been extensively tested. Scattering intensity measurements with a true Rayleigh scatterer produced systematically increased forward scattering, indicating problems with glare. These have been resolved. Preliminary measurements with supersaturated lysozyme solutions revealed that the scatterers grow with time. Work has begun on a computer program for the unified evaluation of simultaneously obtained, multi-angle static and dynamic light scattering data

    Convective flow effects on protein crystal growth

    Get PDF
    The experimental setup for the in-situ high resolution optical monitoring of protein crystal growth/dissolution morphologies was substantially improved. By augmenting the observation system with a temperature-controlled enclosure, laser illumination for the interferometric microscope, and software for pixel by pixel light intensity recording, a height resolution of about two unit cells for lysozyme can now be obtained. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied. Quite unexpectedly, it was found that the longer crystals were in contact with their solution, the lower was their ion content. The development of a model for diffusive-convective transport and resulting distribution of the growth rate on facets was completed. Results obtained for a realistic growth cell geometry show interesting differences between 'growth runs' at 1g and 0g. The kinematic viscosity of lysozyme solutions of various supersaturations and salt concentrations was monitored over time. In contrast to the preliminary finding of other authors, no changes in viscosity were found over four days. The experimental setup for light scattering investigations of aggregation and nucleation in protein solutions was completed, and a computer program for the evaluation of multi-angle light scattering data was acquired

    Significant association of a M129V independent polymorphism in the 5\prime UTR of the PRNP gene with sporadic Creutzfeldt-Jakob disease in a large German case-control study

    Get PDF
    Background: A single nucleotide polymorphism (SNP) in the coding region of the prion protein gene (PRNP) at codon 129 has been repeatedly shown to be an associated factor to sporadic Creutzfeldt-Jakob disease (sCJD), but additional major predisposing DNA variants for sCJD are still unknown. Several previous studies focused on the characterisation of polymorphisms in PRNP and the prion-like doppel gene (PRND), generating contradictory results on relatively small sample sets. Thus, extensive studies are required for validation of the polymorphisms in PRNP and PRND.Methods: We evaluated a set of nine SNPs of PRNP and one SNP of PRND in 593 German sCJD patients and 748 German healthy controls. Genotyping was performed using MALDI-TOF mass spectrometry.Results: In addition to PRNP 129, we detected a significant association between sCJD and allele frequencies of six further PRNP SNPs. No significant association of PRND T174M with sCJD was shown. We observed strong linkage disequilibrium within eight adjacent PRNP SNPs, including PRNP 129. However, the association of sCJD with PRNP 1368 and PRNP 34296 appeared to be independent on the genotype of PRNP 129. We additionally identified the most common haplotypes of PRNP to be over-represented or under-represented in our cohort of patients with sCJD.Conclusion: Our study evaluated previous findings of the association of SNPs in the PRNP and PRND genes in the largest cohorts for association study in sCJD to date, and extends previous findings by defining for the first time the haplotypes associated with sCJD in a large population of the German CJD surveillance study
    corecore