16 research outputs found

    Cellular hysteresis as a principle to maximize the efficacy of antibiotic therapy

    Get PDF
    Rapid evolution is central to the current antibiotic crisis. Sustainable treatments must thus take account of the bacteria’s potential for adaptation. We identified cellular hysteresis as a principle to constrain bacterial evolution. Cellular hysteresis is a persistent change in bacterial physiology, reminiscent of cellular memory, which is induced by one antibiotic and enhances susceptibility toward another antibiotic. Cellular hysteresis increases bacterial extinction in fast sequential treatments and reduces selection of resistance by favoring responses specific to the induced physiological effects. Fast changes between antibiotics are key, because they create the continuously high selection conditions that are difficult to counter by bacteria. Our study highlights how an understanding of evolutionary processes can help to outsmart human pathogens.Antibiotic resistance has become one of the most dramatic threats to global health. While novel treatment options are urgently required, most attempts focus on finding new antibiotic substances. However, their development is costly, and their efficacy is often compromised within short time periods due to the enormous potential of microorganisms for rapid adaptation. Here, we developed a strategy that uses the currently available antibiotics. Our strategy exploits cellular hysteresis, which is the long-lasting, transgenerational change in cellular physiology that is induced by one antibiotic and sensitizes bacteria to another subsequently administered antibiotic. Using evolution experiments, mathematical modeling, genomics, and functional genetic analysis, we demonstrate that sequential treatment protocols with high levels of cellular hysteresis constrain the evolving bacteria by (i) increasing extinction frequencies, (ii) reducing adaptation rates, and (iii) limiting emergence of multidrug resistance. Cellular hysteresis is most effective in fast sequential protocols, in which antibiotics are changed within 12 h or 24 h, in contrast to the less frequent changes in cycling protocols commonly implemented in hospitals. We found that cellular hysteresis imposes specific selective pressure on the bacteria that disfavors resistance mutations. Instead, if bacterial populations survive, hysteresis is countered in two distinct ways, either through a process related to antibiotic tolerance or a mechanism controlled by the previously uncharacterized two-component regulator CpxS. We conclude that cellular hysteresis can be harnessed to optimize antibiotic therapy, to achieve both enhanced bacterial elimination and reduced resistance evolution

    Das Komponieren wirkungsvoller journalistischer Ensembles in Presse, Rundfunk und Fernsehen der DDR im Gesamtprozess der journalistischen Arbeit Forschungsbericht

    No full text
    Universitaet Leipzig, Medienarchiv - 79-03 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Human peripheral blood and bone marrow Epstein-Barr virus-specific T-cell repertoire in latent infection reveals distinct memory T-cell subsets

    No full text
    EBV infection leads to life-long viral persistence. Although EBV infection can result in chronic disease and malignant transformation, most carriers remain disease-free as a result of effective control by T cells. EBV-specific IFN-gamma-producing T cells could be demonstrated in acute and chronic infection as well as during latency. Recent studies, however, provide evidence that assessing IFN-gamma alone is insufficient to assess the quantity and quality of a T-cell response. Using overlapping peptide pools of latent EBV nuclear antigen 1 and lytic BZLF-1 protein and multicolor flow cytometry, we demonstrate that the majority of ex vivo EBV-reactive T cells in healthy virus carriers are indeed IL-2- and/or TNF-producing memory cells, the latter being significantly more frequent in BM. After in vitro expansion, a substantial number of EBV-specific CD4(+) and CD8(+) T cells retained a CC-chemokine receptor 7 (CCR7)-positive memory phenotype. Based on their cytokine profiles, six different EBV-specific T-cell subsets could be distinguished with TNF-single or TNF/IL-2-double producing cells expressing the highest CCR7 levels resembling early-differentiated memory T cells. Our study delineates the memory T-cell profile of a protective immune response and provides a basis for analyzing T-cell responses in EBV-associated diseases

    Freezing medium containing 5% DMSO enhances the cell viability and recovery rate after cryopreservation of regulatory T cell products ex vivo and in vivo

    No full text
    Cell therapies have significant therapeutic potential in diverse fields including regenerative medicine, transplantation tolerance, and autoimmunity. Within these fields, regulatory T cells (Treg) have been deployed to ameliorate aberrant immune responses with great success. However, translation of the cryopreservation strategies employed for other cell therapy products, such as effector T cell therapies, to Treg therapies has been challenging. The lack of an optimized cryopreservation strategy for Treg products presents a substantial obstacle to their broader application, particularly as administration of fresh cells limits the window available for sterility and functional assessment. In this study, we aimed to develop an optimized cryopreservation strategy for our CD4+CD25+Foxp3+ Treg clinical product. We investigate the effect of synthetic or organic cryoprotectants including different concentrations of DMSO on Treg recovery, viability, phenotype, cytokine production, suppressive capacity, and <i>in vivo</i> survival following GMP-compliant manufacture. We additionally assess the effect of adding the extracellular cryoprotectant polyethylene glycol (PEG), or priming cellular expression of heat shock proteins as strategies to improve viability. We find that cryopreservation in serum-free freezing medium supplemented with 10% human serum albumin and 5% DMSO facilitates improved Treg recovery and functionality and supports a reduced DMSO concentration in Treg cryopreservation protocols. This strategy may be easily incorporated into clinical manufacture protocols for future studies

    Magnetic resonance imaging contrast-enhancement with superparamagnetic iron oxide nanoparticles amplifies macrophage foam cell apoptosis in human and murine atherosclerosis

    No full text
    Aims (Ultra) Small superparamagnetic iron oxide nanoparticles, (U)SPIO, are widely used as magnetic resonance imaging contrast media and assumed to be safe for clinical applications in cardiovascular disease. As safety tests largely relied on normolipidaemic models, not fully representative of the clinical setting, we investigated the impact of (U)SPIOs on disease-relevant endpoints in hyperlipidaemic models of atherosclerosis. Methods and results RAW264.7 foam cells, exposed in vitro to ferumoxide (dextran-coated SPIO), ferumoxtran (dextran-coated USPIO), or ferumoxytol [carboxymethyl (CM) dextran-coated USPIO] (all 1 mg Fe/mL) showed increased apoptosis and reactive oxygen species accumulation for ferumoxide and ferumoxtran, whereas ferumoxytol was tolerated well. Pro-apoptotic (TUNEL+) and pro-oxidant activity of ferumoxide (0.3 mg Fe/kg) and ferumoxtran (1 mg Fe/kg) were confirmed in plaque, spleen, and liver of hyperlipidaemic ApoE(-/-) (n = 9/group) and LDLR-/- (n = 9-16/group) mice that had received single IV injections compared with saline-treated controls. Again, ferumoxytol treatment (1 mg Fe/kg) failed to induce apoptosis or oxidative stress in these tissues. Concomitant antioxidant treatment (EUK-8/EUK-134) largely prevented these effects in vitro (-68%, P < 0.05) and in plaques from LDLR-/- mice (-60%, P < 0.001, n = 8/group). Repeated ferumoxtran injections of LDLR-/- mice with pre-existing atherosclerosis enhanced plaque inflammation and apoptosis but did not alter plaque size. Strikingly, carotid artery plaques of endarterectomy patients who received ferumoxtran (2.6 mg Fe/kg) before surgery (n = 9) also showed five-fold increased apoptosis (18.2 vs. 3.7%, respectively; P = 0.004) compared with controls who did not receive ferumoxtran. Mechanistically, neither coating nor particle size seemed accountable for the observed cytotoxicity of ferumoxide and ferumoxtran. Conclusions Ferumoxide and ferumoxtran, but not ferumoxytol, induced apoptosis of lipid-laden macrophages in human and murine atherosclerosis, potentially impacting disease progression in patients with advanced atherosclerosis
    corecore