13,256 research outputs found
Sparse inversion of Stokes profiles. I. Two-dimensional Milne-Eddington inversions
Inversion codes are numerical tools used for the inference of physical
properties from the observations. Despite their success, the quality of current
spectropolarimetric observations and those expected in the near future presents
a challenge to current inversion codes. The pixel-by-pixel strategy of
inverting spectropolarimetric data that we currently utilize needs to be
surpassed and improved. The inverted physical parameters have to take into
account the spatial correlation that is present in the data and that contains
valuable physical information. We utilize the concept of sparsity or
compressibility to develop an new generation of inversion codes for the Stokes
parameters. The inversion code uses numerical optimization techniques based on
the idea of proximal algorithms to impose sparsity. In so doing, we allow for
the first time to exploit the presence of spatial correlation on the maps of
physical parameters. Sparsity also regularizes the solution by reducing the
number of unknowns. We compare the results of the new inversion code with
pixel-by-pixel inversions, demonstrating the increase in robustness of the
solution. We also show how the method can easily compensate for the effect of
the telescope point spread function, producing solutions with an enhanced
contrast.Comment: 13 pages, 8 figures, accepted for publication in A&
Real-time multiframe blind deconvolution of solar images
The quality of images of the Sun obtained from the ground are severely
limited by the perturbing effect of the turbulent Earth's atmosphere. The
post-facto correction of the images to compensate for the presence of the
atmosphere require the combination of high-order adaptive optics techniques,
fast measurements to freeze the turbulent atmosphere and very time consuming
blind deconvolution algorithms. Under mild seeing conditions, blind
deconvolution algorithms can produce images of astonishing quality. They can be
very competitive with those obtained from space, with the huge advantage of the
flexibility of the instrumentation thanks to the direct access to the
telescope. In this contribution we leverage deep learning techniques to
significantly accelerate the blind deconvolution process and produce corrected
images at a peak rate of ~100 images per second. We present two different
architectures that produce excellent image corrections with noise suppression
while maintaining the photometric properties of the images. As a consequence,
polarimetric signals can be obtained with standard polarimetric modulation
without any significant artifact. With the expected improvements in computer
hardware and algorithms, we anticipate that on-site real-time correction of
solar images will be possible in the near future.Comment: 16 pages, 12 figures, accepted for publication in A&
Connection between electrical conductivity and diffusion coefficient of a conductive porous material filled with electrolyte
The paper focuses on the cross-property connection between the effective electrical conductivity and the overall mass transfer coefficient of a two phase material. The two properties are expressed in terms of the tortuosity parameter which generalized to the case of a material with two conductive phases. Elimination of this parameter yields the cross-property connection. The theoretical derivation is verified by comparison with computer simulation
Mid-infrared imaging- and spectro-polarimetric subarcsecond observations of NGC 1068
We present sub-arcsecond 7.513 m imaging- and spectro-polarimetric
observations of NGC 1068 using CanariCam on the 10.4-m Gran Telescopio
CANARIAS. At all wavelengths, we find:
(1) A 90 60 pc extended polarized feature in the northern ionization
cone, with a uniform 44 polarization angle. Its polarization
arises from dust and gas emission in the ionization cone, heated by the active
nucleus and jet, and further extinguished by aligned dust grains in the host
galaxy. The polarization spectrum of the jet-molecular cloud interaction at
24 pc from the core is highly polarized, and does not show a silicate
feature, suggesting that the dust grains are different from those in the
interstellar medium.
(2) A southern polarized feature at 9.6 pc from the core. Its
polarization arises from a dust emission component extinguished by a large
concentration of dust in the galaxy disc. We cannot distinguish between dust
emission from magnetically aligned dust grains directly heated by the jet close
to the core, and aligned dust grains in the dusty obscuring material
surrounding the central engine. Silicate-like grains reproduce the polarized
dust emission in this feature, suggesting different dust compositions in both
ionization cones.
(3) An upper limit of polarization degree of 0.3 per cent in the core. Based
on our polarization model, the expected polarization of the obscuring dusty
material is 0.1 per cent in the 813 m wavelength range. This
low polarization may be arising from the passage of radiation through aligned
dust grains in the shielded edges of the clumps.Comment: 17 pages, 10 figures, accepted for publication at MNRA
- …