1,069 research outputs found

    Relationship between frequencies of pressure oscillations and rotor speed under rotating stall

    Get PDF
    The correlation between the frequencies of pressure oscillation ωosc and the rotor speed (frequencies of rotor rotation ωRR) under established rotating stall were determined by three methods: directly from the time diagram of the oscillation process, from the behavior diagram of parameters in space and time and from frequency characteristics. In total accordance with the Theory of Nonlinear Oscillation, by all methods of analysis, the links are in the form of integer ratios: ωosc / ωRR = 1:2 (for n/ nd= 0.6, where n - rotor speed in the experiment and nd- rotor speed from data-sheet) and ωosc / ωRR = 3:7 (for n/ nd = 0.8 and 0.95). The phases of parameter oscillations in the transverse cross-section are equal to the sensor angles in compressor stator. This is in agreement with the theoretical concept of single-cell configurations of rotating stall

    Innovative Hydrogen Storage Solutions for Aerospace Applications

    Get PDF

    Electrically charged fluids with pressure in Newtonian gravitation and general relativity in d spacetime dimensions: theorems and results for Weyl type systems

    Full text link
    Previous theorems concerning Weyl type systems, including Majumdar-Papapetrou systems, are generalized in two ways, namely, we take these theorems into d spacetime dimensions (d4{\rm d}\geq4), and we also consider the very interesting Weyl-Guilfoyle systems, i.e., general relativistic charged fluids with nonzero pressure. In particular within Newton-Coulomb theory of charged gravitating fluids, a theorem by Bonnor (1980) in three-dimensional space is generalized to arbitrary (d1)>3({\rm d}-1)>3 space dimensions. Then, we prove a new theorem for charged gravitating fluid systems in which we find the condition that the charge density and the matter density should obey. Within general relativity coupled to charged dust fluids, a theorem by De and Raychaudhuri (1968) in four-dimensional spacetimes in rendered into arbitrary d>4{\rm d}>4 dimensions. Then a theorem, new in d=4{\rm d}=4 and d>4{\rm d}>4 dimensions, for Weyl-Guilfoyle systems, is stated and proved, in which we find the condition that the charge density, the matter density, the pressure, and the electromagnetic energy density should obey. This theorem comprises, as particular cases, a theorem by Gautreau and Hoffman (1973) and results in four dimensions by Guilfoyle (1999). Upon connection of an interior charged solution to an exterior Tangherlini solution (i.e., a Reissner-Nordstr\"om solution in d-dimensions), one is able to give a general definition for gravitational mass for this kind of relativistic systems and find a mass relation with the several quantities of the interior solution. It is also shown that for sources of finite extent the mass is identical to the Tolman mass.Comment: 27 page

    Orbital Selective Magnetism in the Spin-Ladder Iron Selenides Ba1x_{1-x}Kx_{x}Fe2_2Se3_3

    Full text link
    Here we show that the 2.80(8) {\mu}B/Fe block antiferromagnetic order of BaFe2Se3 transforms into stripe antiferromagnetic order in KFe2Se3 with a decrease in moment to 2.1(1) {\mu}B/Fe. This reduction is larger than expected from the change in electron count from Ba2+^{2+} to K+^{+}, and occurs with the loss of the displacements of Fe atoms from ideal positions in the ladders, as found by neutron pair distribution function analysis. Intermediate compositions remain insulating, and magnetic susceptibility measurements show a suppression of magnetic order and probable formation of a spin-glass. Together, these results imply an orbital-dependent selection of magnetic versus bonded behavior, driven by relative bandwidths and fillings.Comment: Final versio

    Black Holes in Modified Gravity (MOG)

    Get PDF
    The field equations for Scalar-Tensor-Vector-Gravity (STVG) or modified gravity (MOG) have a static, spherically symmetric black hole solution determined by the mass MM with two horizons. The strength of the gravitational constant is G=GN(1+α)G=G_N(1+\alpha) where α\alpha is a parameter. A regular singularity-free MOG solution is derived using a nonlinear field dynamics for the repulsive gravitational field component and a reasonable physical energy-momentum tensor. The Kruskal-Szekeres completion of the MOG black hole solution is obtained. The Kerr-MOG black hole solution is determined by the mass MM, the parameter α\alpha and the spin angular momentum J=MaJ=Ma. The equations of motion and the stability condition of a test particle orbiting the MOG black hole are derived, and the radius of the black hole photosphere and the shadows cast by the Schwarzschild-MOG and Kerr-MOG black holes are calculated. A traversable wormhole solution is constructed with a throat stabilized by the repulsive component of the gravitational field.Comment: 14 pages, 3 figures. Upgraded version of paper to match published version in European Physics Journal

    Active gravitational mass and the invariant characterization of Reissner-Nordstrom spacetime

    Full text link
    We analyse the concept of active gravitational mass for Reissner-Nordstrom spacetime in terms of scalar polynomial invariants and the Karlhede classification. We show that while the Kretschmann scalar does not produce the expected expression for the active gravitational mass, both scalar polynomial invariants formed from the Weyl tensor, and the Cartan scalars, do.Comment: 6 pages Latex, to appear in General Relativity and Gravitatio

    Quantum Corrections to the Reissner-Nordstrom and Kerr-Newman Metrics: Spin 1

    Get PDF
    A previous evaluation of one-photon loop corrections to the energy-momentum tensor has been extended to particles with unit spin and speculations are presented concerning general properties of such forms.Comment: 21 pages, 1 Figur

    In-situ Analysis of Laminated Composite Materials by X-ray Micro-Computed Tomography and Digital Volume Correlation

    Get PDF
    The complex mechanical behaviour of composite materials, due to internal heterogeneity and multi-layered composition impose deeper studies. This paper presents an experimental investigation technique to perform volume kinematic measurements in composite materials. The association of X-ray micro-computed tomography acquisitions and Digital Volume Correlation (DVC) technique allows the measurement of displacements and deformations in the whole volume of composite specimen. To elaborate the latter, composite fibres and epoxy resin are associated with metallic particles to create contrast during X-ray acquisition. A specific in situ loading device is presented for three-point bending tests, which enables the visualization of transverse shear effects in composite structures

    On the Resolution of the Time-Like Singularities in Reissner-Nordstrom and Negative-Mass Schwarzschild

    Full text link
    Certain time-like singularities are shown to be resolved already in classical General Relativity once one passes from particle probes to scalar waves. The time evolution can be defined uniquely and some general conditions for that are formulated. The Reissner-Nordstrom singularity allows for communication through the singularity and can be termed "beam splitter" since the transmission probability of a suitably prepared high energy wave packet is 25%. The high frequency dependence of the cross section is w^{-4/3}. However, smooth geometries arbitrarily close to the singular one require a finite amount of negative energy matter. The negative-mass Schwarzschild has a qualitatively different resolution interpreted to be fully reflecting. These 4d results are similar to the 2d black hole and are generalized to an arbitrary dimension d>4.Comment: 47 pages, 5 figures. v2: See end of introduction for an important note adde

    Cosmological Constant, Conical Defect and Classical Tests of General Relativity

    Get PDF
    We investigate the perihelion shift of the planetary motion and the bending of starlight in the Schwarzschild field modified by the presence of a Λ\Lambda-term plus a conical defect. This analysis generalizes an earlier result obtained by Islam (Phys. Lett. A 97, 239, 1983) to the case of a pure cosmological constant. By using the experimental data we obtain that the parameter ϵ\epsilon characterizing the conical defect is less than 10910^{-9} and 10710^{-7}, respectively, on the length scales associated with such phenomena. In particular, if the defect is generated by a cosmic string, these values correspond to limits on the linear mass densities of 1019g/cm10^{19}g/cm and 1021g/cm10^{21}g/cm, respectively.Comment: 9 pages, no figures, revte
    corecore