88 research outputs found
Lung eQTLs to Help Reveal the Molecular Underpinnings of Asthma
Genome-wide association studies (GWAS) have identified loci reproducibly associated with pulmonary diseases; however, the molecular mechanism underlying these associations are largely unknown. The objectives of this study were to discover genetic variants affecting gene expression in human lung tissue, to refine susceptibility loci for asthma identified in GWAS studies, and to use the genetics of gene expression and network analyses to find key molecular drivers of asthma. We performed a genome-wide search for expression quantitative trait loci (eQTL) in 1,111 human lung samples. The lung eQTL dataset was then used to inform asthma genetic studies reported in the literature. The top ranked lung eQTLs were integrated with the GWAS on asthma reported by the GABRIEL consortium to generate a Bayesian gene expression network for discovery of novel molecular pathways underpinning asthma. We detected 17,178 cis- and 593 trans- lung eQTLs, which can be used to explore the functional consequences of loci associated with lung diseases and traits. Some strong eQTLs are also asthma susceptibility loci. For example, rs3859192 on chr17q21 is robustly associated with the mRNA levels of GSDMA (P = 3.55 × 10(-151)). The genetic-gene expression network identified the SOCS3 pathway as one of the key drivers of asthma. The eQTLs and gene networks identified in this study are powerful tools for elucidating the causal mechanisms underlying pulmonary disease. This data resource offers much-needed support to pinpoint the causal genes and characterize the molecular function of gene variants associated with lung diseases
Reduction in the risk of human breast cancer by selective cyclooxygenase-2 (COX-2) inhibitors
BACKGROUND: Epidemiologic and laboratory investigations suggest that nonsteroidal anti-inflammatory drugs (NSAIDs) have chemopreventive effects against breast cancer due to their activity against cyclooxygenase-2 (COX-2), the rate-limiting enzyme of the prostaglandin cascade. METHODS: We conducted a case control study of breast cancer designed to compare effects of selective and non-selective COX-2 inhibitors. A total of 323 incident breast cancer patients were ascertained from the James Cancer Hospital, Columbus, Ohio, during 2003–2004 and compared with 649 cancer free controls matched to the cases at a 2:1 ratio on age, race, and county of residence. Data on the past and current use of prescription and over the counter medications and breast cancer risk factors were ascertained using a standardized risk factor questionnaire. Effects of COX-2 inhibiting agents were quantified by calculating odds ratios (OR) and 95% confidence intervals. RESULTS: Results showed significant risk reductions for selective COX-2 inhibitors as a group (OR = 0.29, 95% CI = 0.14–0.59), regular aspirin (OR = 0.49, 95% CI = 0.26–0.94), and ibuprofen or naproxen (0.36, 95% CI = 0.18–0.72). Acetaminophen, a compound with negligible COX-2 activity and low dose aspirin (81 mg) produced no significant change in the risk of breast cancer. CONCLUSION: Selective COX-2 inhibitors (celecoxib and rofecoxib) were only recently approved for use in 1999, and rofecoxib (Vioxx) was withdrawn from the marketplace in 2004. Nevertheless, even in the short window of exposure to these compounds, the selective COX-2 inhibitors produced a significant (71%) reduction in the risk of breast cancer, underscoring their strong potential for breast cancer chemoprevention
Analysis of the Initiating Events in HIV-1 Particle Assembly and Genome Packaging
HIV-1 Gag drives a number of events during the genesis of virions and is the only viral protein required for the assembly of virus-like particles in vitro and in cells. Although a reasonable understanding of the processes that accompany the later stages of HIV-1 assembly has accrued, events that occur at the initiation of assembly are less well defined. In this regard, important uncertainties include where in the cell Gag first multimerizes and interacts with the viral RNA, and whether Gag-RNA interaction requires or induces Gag multimerization in a living cell. To address these questions, we developed assays in which protein crosslinking and RNA/protein co-immunoprecipitation were coupled with membrane flotation analyses in transfected or infected cells. We found that interaction between Gag and viral RNA occurred in the cytoplasm and was independent of the ability of Gag to localize to the plasma membrane. However, Gag:RNA binding was stabilized by the C-terminal domain (CTD) of capsid (CA), which participates in Gag-Gag interactions. We also found that Gag was present as monomers and low-order multimers (e.g. dimers) but did not form higher-order multimers in the cytoplasm. Rather, high-order multimers formed only at the plasma membrane and required the presence of a membrane-binding signal, but not a Gag domain (the CA-CTD) that is essential for complete particle assembly. Finally, sequential RNA-immunoprecipitation assays indicated that at least a fraction of Gag molecules can form multimers on viral genomes in the cytoplasm. Taken together, our results suggest that HIV-1 particle assembly is initiated by the interaction between Gag and viral RNA in the cytoplasm and that this initial Gag-RNA encounter involves Gag monomers or low order multimers. These interactions per se do not induce or require high-order Gag multimerization in the cytoplasm. Instead, membrane interactions are necessary for higher order Gag multimerization and subsequent particle assembly in cells
Murine Leukemias with Retroviral Insertions at Lmo2 Are Predictive of the Leukemias Induced in SCID-X1 Patients Following Retroviral Gene Therapy
Five X-linked severe combined immunodeficiency patients (SCID-X1) successfully treated with autologous bone marrow stem cells infected ex vivo with an IL2RG-containing retrovirus subsequently developed T-cell leukemia and four contained insertional mutations at LMO2. Genetic evidence also suggests a role for IL2RG in tumor formation, although this remains controversial. Here, we show that the genes and signaling pathways deregulated in murine leukemias with retroviral insertions at Lmo2 are similar to those deregulated in human leukemias with high LMO2 expression and are highly predictive of the leukemias induced in SCID-X1 patients. We also provide additional evidence supporting the notion that IL2RG and LMO2 cooperate in leukemia induction but are not sufficient and require additional cooperating mutations. The highly concordant nature of the genetic events giving rise to mouse and human leukemias with mutations at Lmo2 are an encouraging sign to those wanting to use mice to model human cancer and may help in designing safer methods for retroviral gene therapy
The role of Gag in human immunodeficiency virus type 1 virion morphogenesis and early steps of the viral life cycle
The phenotypes of a series of mutant human immunodeficiency virus type 1 proviruses with linker insertion and deletion mutations within the gag coding region were characterized. These mutants, with mutations in the matrix, capsid, and p2 coding regions, produced replication-defective virion particles with defects in the early steps of the viral life cycle. To investigate this phenotype further, the abilities of mutant virion particles to enter T cells, initiate and complete reverse transcription, and transport the newly transcribed proviral DNA were investigated. Only 4 of 10 of the mutants appeared to make wild-type levels of viral DNA. Biochemical analyses of the mutants revealed the middle region of CA as being important in determining virion particle density and sedimentation in velocity gradients. This region also appears to be critical in determining the morphology of mature virion particles by electron microscopy. Particles with aberrant morphology were uninfectious, and only those mutants which displayed cone-shaped cores were capable of carrying out the early steps of the viral life cycle. Thus, the normal morphology of human immunodeficiency virus type 1 appears to be critical to infectivity.</jats:p
Sequences in the human immunodeficiency virus type 1 U3 region required for in vivo and in vitro integration
A series of mutants with alterations in the U3 region of the human immunodeficiency virus type 1 long terminal repeat were made, and the effects of these mutations were evaluated both in vitro and in vivo. When the subterminal 6 to 8 nucleotides of the U3 long terminal repeat were mutated, the resulting provirus was unable to efficiently replicate in vivo, and a mutant oligonucleotide which mimicked the mutation could not be efficiently cleaved but could be joined to target DNA by wild-type recombinant integrase protein in vitro. These results suggest that this region is important in the specific recognition of the viral DNA by the integrase protein.</jats:p
- …
