48 research outputs found

    Serum S100A6 Concentration Predicts Peritoneal Tumor Burden in Mice with Epithelial Ovarian Cancer and Is Associated with Advanced Stage in Patients

    Get PDF
    BACKGROUND:Ovarian cancer is the 5th leading cause of cancer related deaths in women. Five-year survival rates for early stage disease are greater than 94%, however most women are diagnosed in advanced stage with 5 year survival less than 28%. Improved means for early detection and reliable patient monitoring are needed to increase survival. METHODOLOGY AND PRINCIPAL FINDINGS:Applying mass spectrometry-based proteomics, we sought to elucidate an unanswered biomarker research question regarding ability to determine tumor burden detectable by an ovarian cancer biomarker protein emanating directly from the tumor cells. Since aggressive serous epithelial ovarian cancers account for most mortality, a xenograft model using human SKOV-3 serous ovarian cancer cells was established to model progression to disseminated carcinomatosis. Using a method for low molecular weight protein enrichment, followed by liquid chromatography and mass spectrometry analysis, a human-specific peptide sequence of S100A6 was identified in sera from mice with advanced-stage experimental ovarian carcinoma. S100A6 expression was documented in cancer xenografts as well as from ovarian cancer patient tissues. Longitudinal study revealed that serum S100A6 concentration is directly related to tumor burden predictions from an inverse regression calibration analysis of data obtained from a detergent-supplemented antigen capture immunoassay and whole-animal bioluminescent optical imaging. The result from the animal model was confirmed in human clinical material as S100A6 was found to be significantly elevated in the sera from women with advanced stage ovarian cancer compared to those with early stage disease. CONCLUSIONS:S100A6 is expressed in ovarian and other cancer tissues, but has not been documented previously in ovarian cancer disease sera. S100A6 is found in serum in concentrations that correlate with experimental tumor burden and with clinical disease stage. The data signify that S100A6 may prove useful in detecting and/or monitoring ovarian cancer, when used in concert with other biomarkers

    Platelets contribute to disease severity in COVID-19

    No full text
    ObjectiveHeightened inflammation, dysregulated immunity, and thrombotic events are characteristic of hospitalized COVID-19 patients. Given that platelets are key regulators of thrombosis, inflammation, and immunity they represent prime candidates as mediators of COVID-19-associated pathogenesis. The objective of this study was to understand the contribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to the platelet phenotype via phenotypic (activation, aggregation) and transcriptomic characterization.Approach and ResultsIn a cohort of 3915 hospitalized COVID-19 patients, we analyzed blood platelet indices collected at hospital admission. Following adjustment for demographics, clinical risk factors, medication, and biomarkers of inflammation and thrombosis, we find platelet count, size, and immaturity are associated with increased critical illness and all-cause mortality. Bone marrow, lung tissue, and blood from COVID-19 patients revealed the presence of SARS-CoV-2 virions in megakaryocytes and platelets. Characterization of COVID-19 platelets found them to be hyperreactive (increased aggregation, and expression of P-selectin and CD40) and to have a distinct transcriptomic profile characteristic of prothrombotic large and immature platelets. In vitro mechanistic studies highlight that the interaction of SARS-CoV-2 with megakaryocytes alters the platelet transcriptome, and its effects are distinct from the coronavirus responsible for the common cold (CoV-OC43).ConclusionsPlatelet count, size, and maturity associate with increased critical illness and all-cause mortality among hospitalized COVID-19 patients. Profiling tissues and blood from COVID-19 patients revealed that SARS-CoV-2 virions enter megakaryocytes and platelets and associate with alterations to the platelet transcriptome and activation profile.<br

    Platelets amplify endotheliopathy in COVID-19

    No full text
    Given the evidence for a hyperactive platelet phenotype in COVID-19, we investigated effector cell properties of COVID-19 platelets on endothelial cells (ECs). Integration of EC and platelet RNA sequencing revealed that platelet-released factors in COVID-19 promote an inflammatory hypercoagulable endotheliopathy. We identified S100A8 and S100A9 as transcripts enriched in COVID-19 platelets and were induced by megakaryocyte infection with SARS-CoV-2. Consistent with increased gene expression, the heterodimer protein product of S100A8/A9, myeloid-related protein (MRP) 8/14, was released to a greater extent by platelets from COVID-19 patients relative to controls. We demonstrate that platelet-derived MRP8/14 activates ECs, promotes an inflammatory hypercoagulable phenotype, and is a significant contributor to poor clinical outcomes in COVID-19 patients. Last, we present evidence that targeting platelet P2Y12 represents a promising candidate to reduce proinflammatory platelet-endothelial interactions. Together, these findings demonstrate a previously unappreciated role for platelets and their activation-induced endotheliopathy in COVID-19
    corecore