492 research outputs found
Hydrodynamic Simulation of the Cosmological X-ray Background
(Abridged) We use a hydrodynamic simulation of a LambdaCDM model to predict
the extragalactic X-ray background (XRB), focussing on emission from the
intergalactic medium (IGM). We also include X-rays from point sources
associated with galaxies in the simulation, and make maps of the angular
distribution of the emission. We find that filaments in the maps are not
evident, being diluted by projection. In the soft (0.5-2 keV) band, the mean
intensity of radiation from intergalactic and cluster gas is 2.3*10^-12
ergdeg^-2cm^-2s^-1, 35% of the total soft band emission. This is compatible at
the ~1 sigma level with estimates of the unresolved soft background from ROSAT
and {\it Chandra}. Only 4% of the hard (2-10 keV) emission is associated with
the IGM. Relative to AGN flux, the IGM component peaks at a lower redshift
(median z~0.45) so its clustering makes an important contribution to that of
the total XRB. The angular correlations on 0.1-10 arcmin scales are
significant, with an amplitude roughly consistent with an extrapolation of
recent ROSAT results to small scales. A cross-correlation of the XRB against
nearby galaxies taken from a simulated redshift survey also yields a strong
signal from the IGM. Although some recent papers have argued that the expected
soft band intensity from gas in galaxy, group, and cluster halos would exceed
XRB limits unless much of the gas is expelled by supernova feedback, we obtain
reasonable compatibility with current observations in a simulation that
incorporates cooling, star formation, and only modest feedback. A prediction of
our model is that the unresolved portion of the soft XRB will remain mostly
unresolved.Comment: Improved referencing of related papers. Submitted to ApJ, 19 pages,
17 postscript figures, most reduced in resolution, emulateapj.sty, for full
resolution version, see http://cfa-www.harvard.edu/~rcroft/xray.ps.g
The Transverse Proximity Effect: A Probe to the Environment, Anisotropy, and Megayear Variability of QSOs
The transverse proximity effect is the expected decrease in the strength of
the Lya forest absorption in a QSO spectrum when another QSO lying close to the
line of sight enhances the photoionization rate above that due to the average
cosmic ionizing background. We select three QSOs from the Early Data Release of
the Sloan Digital Sky Survey that have nearby foreground QSOs, with proper line
of sight tangential separations of 0.50, 0.82, and 1.10 h^{-1} Mpc. We estimate
that the ionizing flux from the foreground QSO should increase the
photoionization rate by a factor (94, 13, 13) in these three cases, which would
be clearly detectable in the first QSO and marginally so in the other two. We
do not detect the transverse proximity effect. Three possible explanations are
provided: an increase of the gas density in the vicinity of QSOs, time
variability, and anisotropy of the QSO emission. We find that the increase of
gas density near QSOs can be important if they are located in the most massive
halos present at high redshift, but is not enough to fully explain the absence
of the transverse proximity effect. Anisotropy requires an unrealistically
small opening angle of the QSO emission. Variability demands that the
luminosity of the QSO with the largest predicted effect was much lower 10^6
years ago, whereas the transverse proximity effect observed in the HeII Lya
absorption in QSO 0302-003 by Jakobsen et al. (2003) implies a lifetime longer
than 10^7 years. A combination of all three effects may better explain the lack
of Lya absorption reduction. A larger sample of QSO pairs may be used to
diagnose the environment, anisotropy and lifetime distribution of QSOs.Comment: 27 pages, 13 figures, accepted by Ap
X-Ray Emission from the Warm Hot Intergalactic Medium
The number of detected baryons in the Universe at z<0.5 is much smaller than
predicted by standard big bang nucleosynthesis and by the detailed observation
of the Lyman alpha forest at red-shift z=2. Hydrodynamical simulations indicate
that a large fraction of the baryons today is expected to be in a ``warm-hot''
(10^5-10^7K) filamentary gas, distributed in the intergalactic medium. This
gas, if it exists, should be observable only in the soft X-ray and UV bands.
Using the predictions of a particular hydrodynamic model, we simulated the
expected X-ray flux as a function of energy in the 0.1-2 keV band due to the
Warm-Hot Intergalactic Medium (WHIM), and compared it with the flux from local
and high red-shift diffuse components. Our results show that as much as 20% of
the total diffuse X-ray background (DXB) in the energy range 0.37-0.925keV
could be due to X-ray flux from the WHIM, 70% of which comes from filaments at
redshift z between 0.1 and 0.6. Simulations done using a FOV of 3', comparable
with that of Suzaku and Constellation-X, show that in more than 20% of the
observations we expect the WHIM flux to contribute to more than 20% of the DXB.
These simulations also show that in about 10% of all the observations a single
bright filament in the FOV accounts, alone, for more than 20% of the DXB flux.
Red-shifted oxygen lines should be clearly visible in these observations.Comment: 19 pages, 6 figure
Measuring Feedback Using the Intergalactic Medium State and Evolution Inferred from the Soft X-ray Background
We explore the intergalactic medium (IGM) as a potential source of the
unresolved soft X-ray background (XRB) and the feasibility to extract the IGM
state and evolution from XRB observations. We build two analytical models, the
continuum field model and the halo model, to calculate the IGM XRB mean flux,
angular auto correlation and cross correlation with galaxies. Our results
suggest that the IGM may contribute a significant fraction to the unresolved
soft XRB flux and correlations. We calibrated non-Gaussian errors estimated
against our moving mesh hydro simulation and estimate that the ROSAT
all sky survey plus Sloan galaxy photometric redshift survey would allow a
accuracy in the IGM XRB-galaxy cross correlation power spectrum
measurement for and a accuracy in the redshift resolved
X-ray emissivity-galaxy cross correlation power spectrum measurement for
. At small scales, non-gravitational heating, e.g. feedback,
dominates over gravity and leaves unique signatures in the IGM XRB, which
allows a comparable accuracy in the measurement of the amount of
non-gravitational heating and the length scales where non-gravitational energy
balances gravity.Comment: 17 pages, 5 figures. Will appear on ApJ May issu
Where are the Baryons?
New, high resolution, large-scale, cosmological hydrodynamic galaxy formation
simulations of a standard cold dark matter model (with a cosmological constant)
are utilized to predict the distribution of baryons at the present and at
moderate redshift. It is found that the average temperature of baryons is an
increasing function of time, with most of the baryons at the present time
having a temperature in the range 10^{5-7} K. Thus, not only is the universe
dominated by dark matter, but more than one half of the normal matter is yet to
be detected. Detection of this warm/hot gas poses an observational challenge,
requiring sensitive EUV and X-ray satellites. Signatures include a soft, cosmic
X-ray background, apparent warm components in hot clusters due to both
intrinsic warm intra-cluster gas and warm inter-cluster gas projected onto
clusters along the line of sight, absorption lines in X-ray and UV quasar
spectra [e.g., O VI (1032,1038)A lines, OVII 574 eV line], strong emission
lines (e.g., O VIII 653 eV line) and low redshift, broad, low column density
\lya absorption lines. We estimate that approximately 1/4 of the
extragalactic soft X-ray background (SXRB) (at 0.7 keV) arises from the
warm/hot gas, half of it coming from and three-quarters from ,
so the source regions should be identifiable on deep optical images.Comment: ApJ in press, revised (fig 3 is in jpg). Whole paper including
fig3.ps can be obtained at
"http://astro.princeton.edu/~cen/PAPERS_TO_APPEAR/64
AGN have Underweight Black Holes and Reach Eddington
Eddington outflows probably regulate the growth of supermassive black holes
(SMBH) in AGN. I show that effect of the Rayleigh--Taylor instability on these
outflows means that SMBH masses are likely to be a factor of a few below the relation in AGN. This agrees with the suggestion by Batcheldor (2010)
that the relation defines an upper limit to the black hole mass. I
further argue that observed AGN black holes must spend much of their lives
accreting at the Eddington rate. This is already suggested by the low observed
AGN fraction amongst all galaxies despite the need to grow to the masses
required by the Soltan relation, and is reinforced by the suggested low SMBH
masses. Most importantly, this is the simplest explanation of the recent
discovery by Tombesi et al (2010a, b) of the widespread incidence of massive
ultrafast X--ray outflows in a large sample of AGN.Comment: MNRAS, in pres
QSO's from Galaxy Collisions with Naked Black Holes
In the now well established conventional view (see Rees [1] and references
therein), quasi-stellar objects (QSOs) and related active galactic nuclei (AGN)
phenomena are explained as the result of accretion of plasma onto giant black
holes which are postulated to form via gravitational collapse of the high
density regions in the centers of massive host galaxies. This model is
supported by a wide variety of indirect evidence and seems quite likely to
apply at least to some observed AGN phenomena. However, one surprising set of
new Hubble Space Telescope (HST) observations [2-4] directly challenges the
conventional model, and the well known evolution of the QSO population raises
some additional, though not widely recognized, difficulties. We propose here an
alternative possibility: the Universe contains a substantial independent
population of super-massive black holes, and QSO's are a phenomenon that occurs
due to their collisions with galaxies or gas clouds in the intergalactic medium
(IGM). This hypothesis would naturally explain why the QSO population declines
very rapidly towards low redshift, as well as the new HST data.Comment: plain TeX file, no figures, submitted to Natur
The black hole mass distribution in early-type galaxies: cusps in HST photometry interpreted through adiabatic black hole growth
The surface brightness profiles of early-type galaxies have central cusps.
Two characteristic profile types are observed with HST: `core' profiles have a
break at a resolved radius and logarithmic cusp slope gamma < 0.3 inside that
radius; `power-law' profiles have no clear break and gamma > 0.3. With few
exceptions, galaxies with M_V
-20.5 have power-law profiles. Both profile types occur in galaxies with -22 <
M_V < -20.5. We show that these results are consistent with the hypothesis
that: (i) all early-type galaxies have black holes (BHs) that grew
adiabatically in homogeneous isothermal cores; and (ii) these `progenitor'
cores followed scaling relations similar to those of the fundamental plane.
The models studied here are the ones first proposed by Young. Models with BH
masses and progenitor cores that obey established scaling relations predict (at
Virgo) that galaxies with M_V < -21.2 have core profiles and galaxies with M_V
> -21.2 have power-law profiles. This reproduces both the sense and the
absolute magnitude of the observed transition. Intrinsic scatter in BH and
galaxy properties can explain why both types of galaxies are observed around
the transition magnitude. The observed bimodality in cusp slopes may be due to
a bimodality in M_bh/L, with rapidly rotating disky galaxies having larger
M_bh/L than slowly rotating boxy galaxies.
Application to individual galaxies with HST photometry yields a roughly
linear correlation between BH mass and V-band galaxy luminosity, log M_bh =
-1.83 + log L (solar units). This agrees with the average relation for nearby
galaxies with kinematically determined BH masses, and also with predictions
from quasar statistics (shortened abstract).Comment: 41 pages, LaTeX, with 11 PostScript figures. Submitted to the
Astronomical Journal. Postscript version also available from
http://sol.stsci.edu/~marel/abstracts/abs_R23.htm
The distribution and cosmic evolution of massive black hole spins
We study the expected distribution of massive black hole (MBH) spins and its
evolution with cosmic time in the context of hierarchical galaxy formation
theories. Our model uses Monte Carlo realizations of the merger hierarchy in a
LCDM cosmology, coupled to semi-analytical recipes, to follow the merger
history of dark matter halos, the dynamics of the MBHs they host, and their
growth via gas accretion and binary coalescences. The coalescence of comparable
mass holes increases the spin of MBHs, while the capture of smaller companions
in randomly-oriented orbits acts to spin holes down. We find that, given the
distribution of MBH binary mass ratios in hierarchical models, binary
coalescences alone do not lead to a systematic spin-up or spin-down of MBHs
with time: the spin distribution retains memory of its initial conditions. By
contrast, because of the Bardeen-Petterson effect, gas accretion via a thin
disk tends to spin holes up even if the direction of the spin axis changes
randomly in time. In our models, accretion dominates over black hole captures
and efficiently spins holes up. The spin distribution is heavily skewed towards
fast-rotating Kerr holes, is already in place at early epochs, and does not
change much below redshift 5. If accretion is via a thin disk, about 70% of all
MBHs are maximally rotating and have radiative efficiencies approaching 30%
(assuming a "standard'' spin-efficiency conversion). Even in the conservative
case where accretion is via a geometrically thick disk, about 80% of all MBHs
have spin parameters a/m > 0.8 and accretion efficiencies > 12%. Rapidly
spinning holes with high radiative efficiencies may satisfy constraints based
on comparing the local MBH mass density with the mass density inferred from
luminous quasars (Soltan's argument).Comment: 15 pages, 9 figures, accepted for publication in the Astrophysical
Journa
- …