8,931 research outputs found

    Spectral Measures of Bipartivity in Complex Networks

    Full text link
    We introduce a quantitative measure of network bipartivity as a proportion of even to total number of closed walks in the network. Spectral graph theory is used to quantify how close to bipartite a network is and the extent to which individual nodes and edges contribute to the global network bipartivity. It is shown that the bipartivity characterizes the network structure and can be related to the efficiency of semantic or communication networks, trophic interactions in food webs, construction principles in metabolic networks, or communities in social networks.Comment: 16 pages, 1 figure, 1 tabl

    Paramagnetic Breakdown of Superconductivity in Ultrasmall Metallic Grains

    Full text link
    We study the magnetic-field-induced breakdown of superconductivity in nm-scale metal grains having a mean electron level spacing dΔ~d \simeq \tilde\Delta (bulk gap). Using a generalized variational BCS approach that yields good qualitative agreement with measured spectra, we argue that Pauli paramagnetism dominates orbital diamagnetism, as in the case of thin films in a parallel magnetic field. However, the first-order transition observed for the latter can be made continuous by finite size effects. The mean-field procedure of describing the system by a single pairing parameter Δ\Delta breaks down for dΔ~d \simeq \tilde\Delta.Comment: 4 pages of revtex, 3 postscript figures, uses psfrag.sty, epsfig.sty. Slightly revised and improved version, matching published versio

    Numerical Evidence of Luttinger and Fermi Liquid Behaviour in the 2D Hubbard Model

    Full text link
    The two dimensional Hubbard model with a single spin-up electron interacting with a finite density of spin-down electrons is studied using the quantum Monte Carlotechnique, a new conjugate gradient method for the evaluation of the Edwards wavefunction ansatz, and the standard second order perturbation theory. We performed simulations up to 242 sites at U/t=4U/t=4 reaching the zero temperature properties with no ``fermion sign problem'' and found a surprisingly good accuracy of the Edwards wavefunction ansatz at low density or low doping. The conjugate gradient method was then applied to system up to 1922 sites and infinite UU for the Edwards state. Fermi liquid theory seems to remain stable in 2D for all cases studied with the exception of the half filling case where a ``Luttinger like behavior'' survives in the Hubbard model , yielding a vanishing quasiparticle weight in the thermodynamic limit.Comment: 10 pages + 4 pictures, RevTex, SISSA 121/93/CM/M

    Thermodynamic properties of a small superconducting grain

    Full text link
    The reduced BCS Hamiltonian for a metallic grain with a finite number of electrons is considered. The crossover between the ultrasmall regime, in which the level spacing, dd, is larger than the bulk superconducting gap, Δ\Delta, and the small regime, where Δd\Delta \gtrsim d, is investigated analytically and numerically. The condensation energy, spin magnetization and tunneling peak spectrum are calculated analytically in the ultrasmall regime, using an approximation controlled by 1/lnN1/\ln N as small parameter, where NN is the number of interacting electron pairs. The condensation energy in this regime is perturbative in the coupling constant λ\lambda, and is proportional to dNλ2=λ2ωDd N \lambda^2 = \lambda^2 \omega_D. We find that also in a large regime with Δ>d\Delta>d, in which pairing correlations are already rather well developed, the perturbative part of the condensation energy is larger than the singular, BCS, part. The condition for the condensation energy to be well approximated by the BCS result is found to be roughly Δ>dωD\Delta > \sqrt{d \omega_D}. We show how the condensation energy can, in principle, be extracted from a measurement of the spin magnetization curve, and find a re-entrant susceptibility at zero temperature as a function of magnetic field, which can serve as a sensitive probe for the existence of superconducting correlations in ultrasmall grains. Numerical results are presented which suggest that in the large NN limit the 1/N correction to the BCS result for the condensation energy is larger than Δ\Delta.Comment: 17 pages, 7 figures, Submitted to Phys. Rev.

    Naturally Rehearsing Passwords

    Full text link
    We introduce quantitative usability and security models to guide the design of password management schemes --- systematic strategies to help users create and remember multiple passwords. In the same way that security proofs in cryptography are based on complexity-theoretic assumptions (e.g., hardness of factoring and discrete logarithm), we quantify usability by introducing usability assumptions. In particular, password management relies on assumptions about human memory, e.g., that a user who follows a particular rehearsal schedule will successfully maintain the corresponding memory. These assumptions are informed by research in cognitive science and validated through empirical studies. Given rehearsal requirements and a user's visitation schedule for each account, we use the total number of extra rehearsals that the user would have to do to remember all of his passwords as a measure of the usability of the password scheme. Our usability model leads us to a key observation: password reuse benefits users not only by reducing the number of passwords that the user has to memorize, but more importantly by increasing the natural rehearsal rate for each password. We also present a security model which accounts for the complexity of password management with multiple accounts and associated threats, including online, offline, and plaintext password leak attacks. Observing that current password management schemes are either insecure or unusable, we present Shared Cues--- a new scheme in which the underlying secret is strategically shared across accounts to ensure that most rehearsal requirements are satisfied naturally while simultaneously providing strong security. The construction uses the Chinese Remainder Theorem to achieve these competing goals

    Parity Effect in Ground State Energies of Ultrasmall Superconducting Grains

    Full text link
    We study the superconductivity in small grains in the regime when the quantum level spacing δε\delta\varepsilon is comparable to the gap Δ\Delta. As δε\delta\varepsilon is increased, the system crosses over from superconducting to normal state. This crossover is studied by calculating the dependence of the ground state energy of a grain on the parity of the number of electrons. The states with odd numbers of particles carry an additional energy ΔP\Delta_P, which shows non-monotonic dependence on δε\delta\varepsilon. Our predictions can be tested experimentally by studying the parity-induced alternation of Coulomb blockade peak spacings in grains of different sizes.Comment: 4 pages, revtex, multicol.st

    Transport in Double-Crossed Luttinger Liquids

    Full text link
    We study transport through two Luttinger liquids (one-dimensional electrons interacting through a Coulomb repulsion in a metal) coupled together at {\it two} points. External voltage biases are incorporated through boundary conditions. We include density-density couplings as well as single-particle hops at the contacts. For weak repulsive interactions, transport through the wires remains undisturbed by the inter-wire couplings, which renormalise to zero. For strong repulsive interactions, the inter-wire couplings become strong. For symmetric barriers and no external voltage bias, a single gate voltage is sufficient to tune for resonance transmission in both wires. However, for asymmetric couplings or for finite external biases, the system is insulating.Comment: Latex file, 11 pages, one eps figur

    Electron Correlation and Jahn-Teller Interaction in Manganese Oxides

    Full text link
    The interplay between the electron repulsion UU and the Jahn-Teller electron-phonon interation ELRE_{LR} is studied with a large dd model for the ferromagnetic state of the manganese oxides. These two interactions collaborate to induce the local isospin (orbital) moments and reduce the bandwidth BB. Especially the retardation effect of the Jahn-Teller phonon with the frequency Ω\Omega is effective to reduce BB, but the strong Ω\Omega-dependence occurs even when the Coulombic interaction is dominating (U>>ELR U >> E_{LR}) as long as ELR>ΩE_{LR} > \Omega. The phonon spectrum consists of two components, i.e., the temperature independent sharp peak at ω=Ω~=Ω[(U+4ELR)/U]1/2\omega = {\tilde \Omega} = \Omega [(U +4 E_{LR})/U]^{1/2} and that corresponding to the Kondo peak. These results compared with the experiments suggest that Ω<ELR<U\Omega <E_{LR} <U in the metallic manganese oxides.Comment: REVTE

    Ferromagnetic transition in a double-exchange system

    Full text link
    We study ferromagnetic transition in three-dimensional double-exchange model. The influence of strong spin fluctuations on conduction electrons is described in coherent potential approximation. In the framework of thermodynamic approach we construct for the system "electrons (in a disordered spin configuration) + spins" the Landau functional, from the analysis of which critical temperature of ferromagnetic transition is calculated.Comment: 4 pages, 1 eps figure, LaTeX2e, RevTeX. References added, text change

    A small superconducting grain in the canonical ensemble

    Full text link
    By means of the Lanczos method we analyze superconducting correlations in ultrasmall grains at fixed particle number. We compute the ground state properties and the excitation gap of the pairing Hamiltonian as a function of the level spacing δ\delta. Both quantities turn out to be parity dependent and universal functions of the ratio δ/Δ\delta/\Delta (Δ\Delta is the BCS gap). We then characterize superconductivity in the canonical ensemble from the scaling behavior of correlation functions in energy space.Comment: 11 pages Revtex, 5 figures .ep
    corecore