14,586 research outputs found

    News on PHOTOS Monte Carlo: gamma^* -> pi^+ pi^-(gamma) and K^\pm -> pi^+ pi^- e^\pm nu (gamma)

    Full text link
    PHOTOS Monte Carlo is widely used for simulating QED effects in decay of intermediate particles and resonances. It can be easily connected to other main process generators. In this paper we consider decaying processes gamma^* -> pi^+ pi^-(gamma) and K^\pm -> pi^+ pi^- e^\pm nu (gamma) in the framework of Scalar QED. These two processes are interesting not only for the technical aspect of PHOTOS Monte Carlo, but also for precision measurement of alpha_{QED}(M_Z), g-2, as well as pi pi scattering lengths.Comment: 6 pages, 11 figures, proceedings of the PhiPsi09, Oct. 13-16, 2009, Beijing, Chin

    New features in curvaton model

    Full text link
    We demonstrate novel features in the behavior of the second and third order non-linearity parameters of the curvature perturbation, namely, fNLf_{NL} and gNLg_{NL}, arising from non-linear motion of curvaton field. We investigate two classes of potentials for the curvaton - the first has tiny oscillations super-imposed upon the quadratic potential. The second is characterized by a single 'feature' separating two quadratic regimes with different mass scales. The feature may either be a bump or a flattening of the potential. In the case of the oscillatory potential we find that as the width and height of superimposed oscillations increase, both fNLf_{NL} and gNLg_{NL} deviate strongly from their expected values from a quadratic potential. fNLf_{NL} changes sign from positive to negative as the oscillations in the potential become more prominent. Hence, this model can be severely constrained by convincing evidence from observations that fNLf_{NL} is positive. gNLg_{NL}, on the other hand, acquires very large negative values. For the the single feature potential, we find that fNLf_{NL} and gNLg_{NL} exhibit oscillatory behavior as a function of the parameter that controls the feature.Comment: 1+14 pages, 5 figure

    Some Progress in Conformal Geometry

    Get PDF
    This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the σ2\sigma_2-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.Comment: This is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Dynamics of vortex glass phase in strongly type II superconductors

    Full text link
    Dynamics of vortices in strongly type-II superconductors with strong disorder is investigated within the frustrated three-dimensional XY model. For two typical models in [Phys. Rev. Lett. {\bf 91}, 077002 (2003)] and [Phys. Rev. B {\bf 68}, 220502(R) (2003)], a strong evidence for the finite temperature vortex glass transition in the unscreened limit is provided by performing large-scale dynamical simulations. The obtained correlation length exponents and the dynamic exponents in both models are different from each other and from those in the three-dimensional gauge glass model. In addition, a genuine continuous depinning transition is observed at zero temperature for both models. A scaling analysis for the thermal rounding of the depinning transition shows a non-Arrhenius type creep motion in the vortex glass phase, contrarily to the recent studies..Comment: 6 pages, 5 figure

    Elastic parton scattering and non-statistical event-by-event mean-pt fluctuations in Au + Au collisions at RHIC

    Full text link
    Non-statistical event-by-event mean-pt fluctuations in Au + Au collisions at sqrt(s_NN) = 130 and 200 GeV are analyzed in AMPT with string-melting, and the results are compared with STAR data. The analysis suggests that in-medium elastic parton scattering may contribute greatly to the mean-p_t fluctuations in relativistic heavy-ion collisions. Furthermore, it is demonstrated that non-statistical event-by-event mean-pt fluctuations can be used to probe the initial partonic dynamics in these collisions. The comparison shows that with an in-medium elastic parton scattering cross section sigma_p=10 mb, AMPT with string-melting can well reproduce sqrt(s_NN) = 130 GeV data on the centrality dependence of non-statistical event-by-event mean-pt fluctuations. The comparison also shows that the fluctuation data for sqrt(s_NN) = 200 GeV Au + Au collisions can be well reproduced with sigma_p between 6 and 10 mb.Comment: 6 pages, 3 figure
    corecore