26 research outputs found

    A Simple Bioreactor-Based Method to Generate Kidney Organoids from Pluripotent Stem Cells

    No full text
    Summary: Kidney organoids made from pluripotent stem cells have the potential to revolutionize how kidney development, disease, and injury are studied. Current protocols are technically complex, suffer from poor reproducibility, and have high reagent costs that restrict scalability. To overcome some of these issues, we have established a simple, inexpensive, and robust method to grow kidney organoids in bulk from human induced pluripotent stem cells. Our organoids develop tubular structures by day 8 and show optimal tissue morphology at day 14. A comparison with fetal human kidneys suggests that day-14 organoid tissue most closely resembles late capillary loop stage nephrons. We show that deletion of HNF1B, a transcription factor linked to congenital kidney defects, interferes with tubulogenesis, validating our experimental system for studying renal developmental biology. Taken together, our protocol provides a fast, efficient, and cost-effective method for generating large quantities of human fetal kidney tissue, enabling the study of normal and aberrant kidney development. : In this study, Przepiorski et al. present a technically simple and robust protocol to derive kidney organoids from human induced pluripotent stem cells. This technique is inexpensive and efficient, allowing kidney organoids to be generated in bulk. Organoids are obtained rapidly (within 8 days) and, based on their segmentation pattern, correspond to “late capillary loop” stage fetal human nephrons. Keywords: iPSC, kidney organoid, bioreactor, HNF1B, renal development, CRISPR/Cas9, 3D culture, embryoid body, fetal human kidney, fibrosi

    Micro/Mesoporous Activated Carbons Derived from Polyaniline: Promising Candidates for CO2 Adsorption

    No full text
    A series of activated carbons were prepared by carbonization of polyaniline at different temperatures, using KOH or K2CO3 as activating agent. Pure microporous or micro/mesoporous activated carbons were obtained depending on the preparation conditions. Carbonization temperature has been proven to be a key parameter to define the textural properties of the carbon when using KOH. Low carbonization temperatures (400–650 °C) yield materials with a highly developed micro- and mesoporous structure, whereas high temperatures (800 °C) yield microporous carbons. Some of the materials prepared using KOH exhibit a BET surface area superior to 4000 m2/g, with total pore volume exceeding 2.5 cm3/g, which are among the largest found for activated carbons. On the other hand, microporous materials are obtained when using K2CO3, independently of carbonization temperature. Some of the materials were tested for CO2 capture due to their high microporosity and N content. The adsorption capacity for CO2 at atmospheric pressure and 0 °C achieves a value of ∼7.6 mmol CO2/g, which is among the largest reported in the literature. This study provides guidelines for the design of activated carbons with a proper N/C ratio for CO2 capture at atmospheric pressure.Authors acknowledge financial support from BroadBit industry (BroadBit Slovakia s.r.o. Eötvösova ul. 12. 945 01, Komárno, Slovakia)
    corecore