262 research outputs found

    A thermoelectric power generating heat exchanger: Part I - Experimental realization

    Get PDF
    An experimental realization of a heat exchanger with commercial thermoelectric generators (TEGs) is presented. The power producing capabilities as a function of flow rate and temperature span are characterized for two different commercial heat transfer fluids and for three different thermal interface materials. The device is shown to produce 2 W per TEG or 0.22 W cm2^{-2} at a fluid temperature difference of 175 ^\circC and a flow rate per fluid channel of 5 L min1^{-1}. One experimentally realized design produced 200 W in total from 100 TEGs. For the design considered here, the power production is shown to depend more critically on the fluid temperature span than on the fluid flow rate. Finally, the temperature span across the TEG is shown to be 55% to 75% of the temperature span between the hot and cold fluids.Comment: 9 pages, 11 figure

    Microscopic origin of the mobility enhancement at a spinel/perovskite oxide heterointerface revealed by photoemission spectroscopy

    Get PDF
    The spinel/perovskite heterointerface γ\gamma-Al2_2O3_3/SrTiO3_3 hosts a two-dimensional electron system (2DES) with electron mobilities exceeding those in its all-perovskite counterpart LaAlO3_3/SrTiO3_3 by more than an order of magnitude despite the abundance of oxygen vacancies which act as electron donors as well as scattering sites. By means of resonant soft x-ray photoemission spectroscopy and \textit{ab initio} calculations we reveal the presence of a sharply localized type of oxygen vacancies at the very interface due to the local breaking of the perovskite symmetry. We explain the extraordinarily high mobilities by reduced scattering resulting from the preferential formation of interfacial oxygen vacancies and spatial separation of the resulting 2DES in deeper SrTiO3_3 layers. Our findings comply with transport studies and pave the way towards defect engineering at interfaces of oxides with different crystal structures.Comment: Accepted as Rapid Communications in Physical Review
    corecore