1,296 research outputs found
Optical assessment of gel-like mechanical and structural properties of surface layers: single particle tracking and molecular rotors
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Thin gel-like layers form at many surfaces of natural or artificial origin. Important properties of such
layers include thickness, viscosity and density. Here we discuss two optical approaches which allow assessment of these properties with high resolution.
The first approach relies on centroid calculation and defocus imaging based 3D tracking of fluorescent tracer
particles, which is based on standard fluorescent microscopy and allows a precision of particle detection in the
range of 10nm. The size of the particle and its surface charge and polarity will determine the particle invasion
into the layer. Thus simultaneous application of different colored beads with different size and properties can
reveal the thickness and nature of the layer. Via tracking the thermal vibration of particles invading the layer the
bulk viscosity of the layer can be calculated.
The second approach uses “molecular rotor” fluorophores (MR). Due to their molecular structure, the MR’s
fluorescence quantum yield increases as their internal rotation is hampered by e.g. high viscosity of the
embedding medium. The MRs are several orders of magnitude smaller than the structural (macro) molecules of a gel-like layer and therefore the MRs are not necessarily directly sensitive toward the bulk viscosity of the layer. In contrast, the MRs internal rotation will be attenuated by the MRs interaction with the structural elements of the layer or the solvent included in it. Depending on their molecular structure MRs exhibit different sensitivity to the mechanical properties of the large macromolecules or the solvent in a layer. Thus, they may be used to assess the microdomain’s viscosity or density in a surface layer. Using a ratiometric imaging approach, they can be used for continuous measurements in very different experimental settings
Vesicles in a Poiseuille flow
Vesicle dynamics in unbounded Poiseuille flow is analyzed using a
small-deformation theory. Our analytical results quantitatively describe
vesicle migration and provide new physical insights. At low ratio between the
inner and outer viscosity (i.e. in the tank-treading regime), the
vesicle always migrates towards the flow centerline, unlike other soft
particles such as drops. Above a critical , vesicle tumbles and
cross-stream migration vanishes. A novel feature is predicted, namely the
coexistence of two types of nonequilibrium configurations at the centreline, a
bullet-like and a parachute-like shapes.Comment: 4 pages and 5 figure
Bistability in a simple fluid network due to viscosity contrast
We study the existence of multiple equilibrium states in a simple fluid
network using Newtonian fluids and laminar flow. We demonstrate theoretically
the presence of hysteresis and bistability, and we confirm these predictions in
an experiment using two miscible fluids of different viscosity--sucrose
solution and water. Possible applications include bloodflow, microfluidics, and
other network flows governed by similar principles
The integral monodromy of hyperelliptic and trielliptic curves
We compute the \integ/\ell and \integ_\ell monodromy of every irreducible
component of the moduli spaces of hyperelliptic and trielliptic curves. In
particular, we provide a proof that the \integ/\ell monodromy of the moduli
space of hyperelliptic curves of genus is the symplectic group
\sp_{2g}(\integ/\ell). We prove that the \integ/\ell monodromy of the
moduli space of trielliptic curves with signature is the special
unitary group \su_{(r,s)}(\integ/\ell\tensor\integ[\zeta_3])
A multiple scale model for tumor growth
We present a physiologically structured lattice model for vascular tumor growth which accounts for blood flow and structural adaptation of the vasculature, transport of oxygen, interaction between cancerous and normal tissue, cell division, apoptosis, vascular endothelial growth factor release, and the coupling between these processes. Simulations of the model are used to investigate the effects of nutrient heterogeneity, growth and invasion of cancerous tissue, and emergent growth laws
A simplified particulate model for coarse-grained hemodynamics simulations
Human blood flow is a multi-scale problem: in first approximation, blood is a
dense suspension of plasma and deformable red cells. Physiological vessel
diameters range from about one to thousands of cell radii. Current
computational models either involve a homogeneous fluid and cannot track
particulate effects or describe a relatively small number of cells with high
resolution, but are incapable to reach relevant time and length scales. Our
approach is to simplify much further than existing particulate models. We
combine well established methods from other areas of physics in order to find
the essential ingredients for a minimalist description that still recovers
hemorheology. These ingredients are a lattice Boltzmann method describing rigid
particle suspensions to account for hydrodynamic long range interactions
and---in order to describe the more complex short-range behavior of
cells---anisotropic model potentials known from molecular dynamics simulations.
Paying detailedness, we achieve an efficient and scalable implementation which
is crucial for our ultimate goal: establishing a link between the collective
behavior of millions of cells and the macroscopic properties of blood in
realistic flow situations. In this paper we present our model and demonstrate
its applicability to conditions typical for the microvasculature.Comment: 12 pages, 11 figure
BMW – Mastering the Crises with “New Efficiency?”
Purpose Make a contribution on company business models and typical reactions to economic crises. Design/methodology/approach Media-analysis-based case study. Findings Crisis is handled through drawing on a strategy deriving from the typical features of the company; through the crisis these features are even intensified. Research limitations/implications Multinational companies are complex and only transparent to a small degree; the empirical data therefore rests on a database with articles. Social implications Social implications can be seen at the BMW as a functioning example for social partnership as a form of economic embeddedness at the societal level
Repositioning the Catalytic Triad Aspartic Acid of Haloalkane Dehalogenase: Effects on Stability, Kinetics, and Structure
Haloalkane dehalogenase (DhlA) catalyzes the hydrolysis of haloalkanes via an alkyl-enzyme intermediate. The covalent intermediate, which is formed by nucleophilic substitution with Asp124, is hydrolyzed by a water molecule that is activated by His289. The role of Asp260, which is the third member of the catalytic triad, was studied by site-directed mutagenesis. Mutation of Asp260 to asparagine resulted in a catalytically inactive D260N mutant, which demonstrates that the triad acid Asp260 is essential for dehalogenase activity. Furthermore, Asp260 has an important structural role, since the D260N enzyme accumulated mainly in inclusion bodies during expression, and neither substrate nor product could bind in the active-site cavity. Activity for brominated substrates was restored to D260N by replacing Asn148 with an aspartic or glutamic acid. Both double mutants D260N+N148D and D260N+N148E had a 10-fold reduced kcat and 40-fold higher Km values for 1,2-dibromoethane compared to the wild-type enzyme. Pre-steady-state kinetic analysis of the D260N+N148E double mutant showed that the decrease in kcat was mainly caused by a 220-fold reduction of the rate of carbon-bromine bond cleavage and a 10-fold decrease in the rate of hydrolysis of the alkyl-enzyme intermediate. On the other hand, bromide was released 12-fold faster and via a different pathway than in the wild-type enzyme. Molecular modeling of the mutant showed that Glu148 indeed could take over the interaction with His289 and that there was a change in charge distribution in the tunnel region that connects the active site with the solvent. On the basis of primary structure similarity between DhlA and other α/β-hydrolase fold dehalogenases, we propose that a conserved acidic residue at the equivalent position of Asn148 in DhlA is the third catalytic triad residue in the latter enzymes.
- …