60 research outputs found
Block representation type of reduced enveloping algebras
No abstract available
On symmetric invariants of centralisers in reductive Lie algebras
Let be the centraliser of a nilpotent element in a finite
dimensional simple Lie algebra of rank over an algebraically closed
field of characteristic 0. We investigate the algebra of
symmetric invariants of and prove that if is of type or , then
is always a graded polynomial algebra in variables. We show
that this continues to hold for some nilpotent elements in the Lie algebras of
other types. In type we prove that is freely generated by a
regular sequence in and describe the tangent cone at to the
nilpotent variety of .Comment: 49 pages, 2 figure
Non-rationality of some fibrations associated to Klein surfaces
We study the polynomial fibration induced by the equation of the Klein
surfaces obtained as quotient of finite linear groups of automorphisms of the
plane; this surfaces are of type A, D, E, corresponding to their singularities.
The generic fibre of the polynomial fibration is a surface defined over the
function field of the line. We proved that it is not rational in cases D, E,
although it is obviously rational in the case A.
The group of automorphisms of the Klein surfaces is also described, and is
linear and of finite dimension in cases D, E; this result being obviously false
in case A.Comment: 18 page
The congruence kernel of an arithmetic lattice in a rank one algebraic group over a local field
Let k be a global field and let k_v be the completion of k with respect to v,
a non-archimedean place of k. Let \mathbf{G} be a connected, simply-connected
algebraic group over k, which is absolutely almost simple of k_v-rank 1. Let
G=\mathbf{G}(k_v). Let \Gamma be an arithmetic lattice in G and let C=C(\Gamma)
be its congruence kernel. Lubotzky has shown that C is infinite, confirming an
earlier conjecture of Serre. Here we provide complete solution of the
congruence subgroup problem for \Gamm$ by determining the structure of C. It is
shown that C is a free profinite product, one of whose factors is
\hat{F}_{\omega}, the free profinite group on countably many generators. The
most surprising conclusion from our results is that the structure of C depends
only on the characteristic of k. The structure of C is already known for a
number of special cases. Perhaps the most important of these is the
(non-uniform) example \Gamma=SL_2(\mathcal{O}(S)), where \mathcal{O}(S) is the
ring of S-integers in k, with S=\{v\}, which plays a central role in the theory
of Drinfeld modules. The proof makes use of a decomposition theorem of
Lubotzky, arising from the action of \Gamma on the Bruhat-Tits tree associated
with G.Comment: 27 pages, 5 figures, to appear in J. Reine Angew. Mat
Representations of restricted Lie algebras and families of associative â„’-algebras
Let ℒ be an n-dimensional restricted Lie algebra over an algebraically closed field K of characteristic p > 0. Given a linear function ξ on ℒ and a scalar λ ∈ K, we introduce an associative algebra Uξ,λ(ℒ) of dimension pn over K. The algebra Uξ,1(ℒ) is isomorphic to the reduced enveloping algebra Uξ(ℒ), while the algebra Uξ,0(ℒ) is nothing but the reduced symmetric algebra Sξ(ℒ). Deformation arguments (applied to this family of algebras) enable us to derive a number of results on dimensions of simple ℒ-modules. In particular, we give a new proof of the Kac-Weisfeiler conjecture (see [41], [35]) which uses neither support varieties nor the classification of nilpotent orbits, and compute the maximal dimension of simple ℒ-modules for all ℒ having a toral stabiliser of a linear function
On classical finite and affine W-algebras
This paper is meant to be a short review and summary of recent results on the
structure of finite and affine classical W-algebras, and the application of the
latter to the theory of generalized Drinfeld-Sokolov hierarchies.Comment: 12 page
Generators of simple Lie algebras in arbitrary characteristics
In this paper we study the minimal number of generators for simple Lie
algebras in characteristic 0 or p > 3. We show that any such algebra can be
generated by 2 elements. We also examine the 'one and a half generation'
property, i.e. when every non-zero element can be completed to a generating
pair. We show that classical simple algebras have this property, and that the
only simple Cartan type algebras of type W which have this property are the
Zassenhaus algebras.Comment: 26 pages, final version, to appear in Math. Z. Main improvements and
corrections in Section 4.
Modular Lie algebras and the Gelfand-Kirillov conjecture
Let g be a finite dimensional simple Lie algebra over an algebraically closed
field of characteristic zero. We show that if the Gelfand-Kirillov conjecture
holds for g, then g has type A_n, C_n or G_2.Comment: 20 page
Laguerre polynomials of derivations
We introduce a grading switching for arbitrary non-associative algebras of prime characteristic p, aimed at producing a new grading of an algebra from a given one. We take inspiration from a fundamental tool in the classification theory of modular Lie algebras known as toral switching, which relies on a delicate adaptation of the exponential of a derivation. Our grading switching is achieved by evaluating certain generalized Laguerre polynomials of degree p − 1, which play the role of generalized exponentials, on a derivation of the algebra. A crucial part of our argument is establishing a congruence for them which is an appropriate analogue of the functional equation exp(x) · exp(y) = exp(x+y) for the classical exponential. Besides having a wider scope, our treatment provides a more transparent explanation of some aspects of the original toral switching, which can be recovered as a special case
Quotients for sheets of conjugacy classes
We provide a description of the orbit space of a sheet S for the conjugation action of a complex simple simply connected algebraic group G. This is obtained by means of a bijection between S 15G and the quotient of a shifted torus modulo the action of a subgroup of the Weyl group and it is the group analogue of a result due to Borho and Kraft. We also describe the normalisation of the categorical quotient // for arbitrary simple G and give a necessary and sufficient condition for //G to be normal in analogy to results of Borho, Kraft and Richardson. The example of G2 is worked out in detail
- …