88 research outputs found
Answer Set Planning Under Action Costs
Recently, planning based on answer set programming has been proposed as an
approach towards realizing declarative planning systems. In this paper, we
present the language Kc, which extends the declarative planning language K by
action costs. Kc provides the notion of admissible and optimal plans, which are
plans whose overall action costs are within a given limit resp. minimum over
all plans (i.e., cheapest plans). As we demonstrate, this novel language allows
for expressing some nontrivial planning tasks in a declarative way.
Furthermore, it can be utilized for representing planning problems under other
optimality criteria, such as computing ``shortest'' plans (with the least
number of steps), and refinement combinations of cheapest and fastest plans. We
study complexity aspects of the language Kc and provide a transformation to
logic programs, such that planning problems are solved via answer set
programming. Furthermore, we report experimental results on selected problems.
Our experience is encouraging that answer set planning may be a valuable
approach to expressive planning systems in which intricate planning problems
can be naturally specified and solved
Transparent Personal Data Processing: The Road Ahead
The European General Data Protection Regulation defines a set of obligations for personal data controllers and processors. Primary obligations include: obtaining explicit consent from the data subject for the processing of personal data, providing full transparency with respect to the processing, and enabling data rectification and erasure (albeit only in certain circumstances). At the core of any transparency architecture is the logging of events in relation to the processing and sharing of personal data. The logs should enable verification that data processors abide by the access and usage control policies that have been associated with the data based on the data subject's consent and the applicable regulations. In this position paper, we: (i) identify the requirements that need to be satisfied by such a transparency architecture, (ii) examine the suitability of existing logging mechanisms in light of said requirements, and (iii) present a number of open challenges and opportunities
Enabling Web-scale data integration in biomedicine through Linked Open Data
The biomedical data landscape is fragmented with several isolated, heterogeneous data and knowledge sources, which use varying formats, syntaxes, schemas, and entity notations, existing on the Web. Biomedical researchers face severe logistical and technical challenges to query, integrate, analyze, and visualize data from multiple diverse sources in the context of available biomedical knowledge. Semantic Web technologies and Linked Data principles may aid toward Web-scale semantic processing and data integration in biomedicine. The biomedical research community has been one of the earliest adopters of these technologies and principles to publish data and knowledge on the Web as linked graphs and ontologies, hence creating the Life Sciences Linked Open Data (LSLOD) cloud. In this paper, we provide our perspective on some opportunities proffered by the use of LSLOD to integrate biomedical data and knowledge in three domains: (1) pharmacology, (2) cancer research, and (3) infectious diseases. We will discuss some of the major challenges that hinder the wide-spread use and consumption of LSLOD by the biomedical research community. Finally, we provide a few technical solutions and insights that can address these challenges. Eventually, LSLOD can enable the development of scalable, intelligent infrastructures that support artificial intelligence methods for augmenting human intelligence to achieve better clinical outcomes for patients, to enhance the quality of biomedical research, and to improve our understanding of living systems
A More Decentralized Vision for Linked Data
We claim that ten years into Linked Data there are still many unresolved challenges towards arriving at a truly machine-readable and decentralized Web of data. With a focus on the the biomedical domain, currently, one of the most promising adopters of Linked Data, we highlight and exemplify key technical and non-technical challenges to the success of Linked Data, and we outline potential solution strategies
A More Decentralized Vision for Linked Data
In this deliberately provocative position paper, we claim that ten years into Linked Data there are still (too?) many unresolved challenges towards arriving at a truly machine-readable and decentralized Web of data. We take a deeper look at the biomedical domain - currently, one of the most promising "adopters" of Linked Data - if we believe the ever-present "LOD cloud" diagram. Herein, we try to highlight and exemplify key technical and non-technical challenges to the success of LOD, and we outline potential solution strategies. We hope that this paper will serve as a discussion basis for a fresh start towards more actionable, truly decentralized Linked Data, and as a call to the community to join forces.Series: Working Papers on Information Systems, Information Business and Operation
Context-Free Path Queries on RDF Graphs
Navigational graph queries are an important class of queries that canextract
implicit binary relations over the nodes of input graphs. Most of the
navigational query languages used in the RDF community, e.g. property paths in
W3C SPARQL 1.1 and nested regular expressions in nSPARQL, are based on the
regular expressions. It is known that regular expressions have limited
expressivity; for instance, some natural queries, like same generation-queries,
are not expressible with regular expressions. To overcome this limitation, in
this paper, we present cfSPARQL, an extension of SPARQL query language equipped
with context-free grammars. The cfSPARQL language is strictly more expressive
than property paths and nested expressions. The additional expressivity can be
used for modelling graph similarities, graph summarization and ontology
alignment. Despite the increasing expressivity, we show that cfSPARQL still
enjoys a low computational complexity and can be evaluated efficiently.Comment: 25 page
Data Privacy Vocabularies and Controls: Semantic Web for Transparency and Privacy
Managing Privacy and understanding the handling of personal data has turned into a fundamental right-at least for Europeans-since May 25th with the coming into force of the General Data Protection Regulation. Yet, whereas many different tools by different vendors promise companies to guarantee their compliance to GDPR in terms of consent management and keeping track of the personal data they handle in their processes, interoperability between such tools as well uniform user facing interfaces will be needed to enable true transparency, user-configurable and -manageable privacy policies and data portability (as also implicitly promised by GDPR). We argue that such interoperability can be enabled by agreed upon vocabularies and Linked Data
A Scalable Consent, Transparency and Compliance Architecture
In this demo we present the SPECIAL consent, transparency and compliance system. The objective of the system is to afford data subjects more control over personal data processing and sharing, while at the same time enabling data controllers and processors to comply with consent and transparency obligations mandated by the European General Data Protection Regulation. A short promotional video can be found at https://purl.com/specialprivacy/demos/ESWC2018
- …