72 research outputs found

    Dysmetabolic circulating tumor cells are prognostic in metastatic breast cancer

    Get PDF
    Circulating tumor cells (CTCs) belong to a heterogeneous pool of rare cells, and a unequivocal phenotypic definition of CTC is lacking. Here, we present a definition of metabolically-altered CTC (MBA-CTCs) as CD45-negative cells with an increased extracellular acidification rate, detected with a single-cell droplet microfluidic technique. We tested the prognostic value of MBA-CTCs in 31 metastatic breast cancer patients before starting a new systemic therapy (T0) and 3\u20134 weeks after (T1), comparing results with a parallel FDA-approved CellSearch (CS) approach. An increased level of MBA-CTCs was associated with: I) a shorter median PFS pre-therapy (123 days vs. 306; p < 0.0001) and during therapy (139 vs. 266 days; p = 0.0009); ii) a worse OS pre-therapy (p = 0.0003, 82% survival vs. 20%) and during therapy (p = 0.0301, 67% survival vs. 38%); iii) good agreement with therapy response (kappa = 0.685). The trend of MBA-CTCs over time (combining data at T0 and T1) added information with respect to separate evaluation of T0 and T1. The combined results of the two assays (MBA and CS) increased stratification accuracy, while correlation between MBA and CS was not significant, suggesting that the two assays are detecting different CTC subsets. In conclusion, this study suggests that MBA allows detection of both EpCAM-negative and EpCAM-positive, viable and label-free CTCs, which provide clinical information apparently equivalent and complementary to CS. A further validation of proposed method and cut-offs is needed in a larger, separate study

    Hot embossing for fabrication of a microfluidic 3D cell culture

    Get PDF
    Clinically relevant studies of cell function in vitro require a physiologically-representative microenvironment possessing aspects such as a 3D extracellular matrix (ECM) and controlled biochemical and biophysical parameters. A polydimethylsiloxane (PDMS) microfluidic system with a 3D collagen gel has previously served for analysis of factors inducing different responses of cells in a 3D microenvironment under controlled biochemical and biophysical parameters. In the present study, applying the known commercially-viable manufacturing methods to a cyclic olefin copolymer (COC) material resulted in a microfluidic device with enhanced 3D gel capabilities, controlled surface properties, and improved potential to serve high-volume applications. Hot embossing and roller lamination molded and sealed the microfluidic device. A combination of oxygen plasma and thermal treatments enhanced the sealing, ensured proper placement of the 3D gel, and created controlled and stable surface properties within the device. Culture of cells in the new device indicated no adverse effects of the COC material or processing as compared to previous PDMS devices. The results demonstrate a methodology to transition microfludic devices for 3D cell culture from scientific research to high-volume applications with broad clinical impact.National Cancer Institute (U.S.) (award R21CA140096)Charles Stark Draper Laboratory (IR&D Grant

    3D microniches reveal the importance of cell size and shape

    Get PDF
    Contains fulltext : 187738.pdf (publisher's version ) (Open Access)12 p

    Microfabricated Gaps Reveal the Effect of Geometrical Control in Wound Healing

    No full text
    Contains fulltext : 231314.pdf (Publisher’s version ) (Open Access)19 oktober 20208 p

    Probing single-cell metabolism reveals prognostic value of highly metabolically active circulating stromal cells in prostate cancer

    No full text
    Contains fulltext : 225912.pdf (publisher's version ) (Open Access)Despite their important role in metastatic disease, no general method to detect circulating stromal cells (CStCs) exists. Here, we present the Metabolic Assay-Chip (MA-Chip) as a label-free, droplet-based microfluidic approach allowing single-cell extracellular pH measurement for the detection and isolation of highly metabolically active cells (hm-cells) from the tumor microenvironment. Single-cell mRNA-sequencing analysis of the hm-cells from metastatic prostate cancer patients revealed that approximately 10% were canonical EpCAM(+) hm-CTCs, 3% were EpCAM(-) hm-CTCs with up-regulation of prostate-related genes, and 87% were hm-CStCs with profiles characteristic for cancer-associated fibroblasts, mesenchymal stem cells, and endothelial cells. Kaplan-Meier analysis shows that metastatic prostate cancer patients with more than five hm-cells have a significantly poorer survival probability than those with zero to five hm-cells. Thus, prevalence of hm-cells is a prognosticator of poor outcome in prostate cancer, and a potentially predictive and therapy response biomarker for agents cotargeting stromal components and preventing epithelial-to-mesenchymal transition

    Unravelling receptor and RGD motif dependence of retargeted adenoviral vectors using advanced tumor model systems

    Get PDF
    Recent advances in engineering adenoviruses are paving the way for new therapeutic gene delivery approaches in cancer. However, there is limited knowledge regarding the impact of adenoviral retargeting on transduction efficiency in more complex tumor architectures, and the role of the RGD loop at the penton base in retargeting is unclear. To address this gap, we used tumor models of increasing complexity to study the role of the receptor and the RGD motif. Employing tumor-fibroblast co-culture models, we demonstrate the importance of the RGD motif for efficient transduction in 2D through the epithelial cell adhesion molecule (EpCAM), but not the epidermal growth factor receptor (EGFR). Via optical clearing of co-culture spheroids, we show that the RGD motif is required for transduction via both receptors in 3D tumor architectures. We subsequently employed a custom-designed microfluidic model containing collagen-embedded tumor spheroids, mimicking the interplay between interstitial flow, extracellular matrix and adenoviral transduction. Image analysis of on-chip cleared spheroids indicated the importance of the RGD motif for on-chip adenoviral transduction. Together, our results show the interrelationship between receptor characteristics, the RGD motif, the 3D tumor architecture and retargeted adenoviral transduction efficiency. The findings are important for the rational design of next-generation therapeutic adenoviruses

    Cellular Volume and Matrix Stiffness Direct Stem Cell Behavior in a 3D Microniche

    Get PDF
    Contains fulltext : 200915.pdf (publisher's version ) (Open Access

    Unravelling Receptor and RGD Motif Dependence of Retargeted Adenoviral Vectors using Advanced Tumor Model Systems

    No full text
    Contains fulltext : 214069.pdf (publisher's version ) (Open Access
    corecore