2,797 research outputs found
Quantum state transfer between field and atoms in Electromagnetically Induced Transparency
We show that a quasi-perfect quantum state transfer between an atomic
ensemble and fields in an optical cavity can be achieved in Electromagnetically
Induced Transparency (EIT). A squeezed vacuum field state can be mapped onto
the long-lived atomic spin associated to the ground state sublevels of the
Lambda-type atoms considered. The EIT on-resonance situation show interesting
similarities with the Raman off-resonant configuration. We then show how to
transfer the atomic squeezing back to the field exiting the cavity, thus
realizing a quantum memory-type operation.Comment: 8 pages, 4 figure
Teleportation of an atomic ensemble quantum state
We propose a protocol to achieve high fidelity quantum state teleportation of
a macroscopic atomic ensemble using a pair of quantum-correlated atomic
ensembles. We show how to prepare this pair of ensembles using quasiperfect
quantum state transfer processes between light and atoms. Our protocol relies
on optical joint measurements of the atomic ensemble states and magnetic
feedback reconstruction
Dynamics of a pulsed continuous variable quantum memory
We study the transfer dynamics of non-classical fluctuations of light to the
ground-state collective spin components of an atomic ensemble during a pulsed
quantum memory sequence, and evaluate the relevant physical quantities to be
measured in order to characterize such a quantum memory. We show in particular
that the fluctuations stored into the atoms are emitted in temporal modes which
are always different than those of the readout pulse, but which can
nevertheless be retrieved efficiently using a suitable temporal mode-matching
technique. We give a simple toy model - a cavity with variable transmission -
which accounts for the behavior of the atomic quantum memory.Comment: 6 pages, 5 figure
Entanglement storage in atomic ensembles
We propose to entangle macroscopic atomic ensembles in cavity using
EPR-correlated beams. We show how the field entanglement can be almost
perfectly mapped onto the long-lived atomic spins associated with the ground
states of the ensembles, and how it can be retrieved in the fields exiting the
cavities after a variable storage time. Such a continuous variable quantum
memory is of interest for manipulating entanglement in quantum networks
Effective mass in quantum effects of radiation pressure
We study the quantum effects of radiation pressure in a high-finesse cavity
with a mirror coated on a mechanical resonator. We show that the optomechanical
coupling can be described by an effective susceptibility which takes into
account every acoustic modes of the resonator and their coupling to the light.
At low frequency this effective response is similar to a harmonic response with
an effective mass smaller than the total mass of the mirror. For a plano-convex
resonator the effective mass is related to the light spot size and becomes very
small for small optical waists, thus enhancing the quantum effects of
optomechanical coupling.Comment: 11 pages, 4 figures, RevTe
Reversible Quantum Interface for Tunable Single-sideband Modulation
Using Electromagnetically Induced Transparency (EIT) in a Cesium vapor, we
demonstrate experimentally that the quantum state of a light beam can be mapped
into the long lived Zeeman coherences of an atomic ground state. Two
non-commuting variables carried by light are simultaneously stored and
subsequentely read-out, with no noise added. We compare the case where a
tunable single sideband is stored independently of the other one to the case
where the two symmetrical sidebands are stored using the same EIT transparency
window.Comment: 4 pages, 6 figure
Atomic quantum memory: cavity vs single pass schemes
This paper presents a quantum mechanical treatment for both atomic and field
fluctuations of an atomic ensemble interacting with propagating fields, either
in Electromagnetically Induced Transparency or in a Raman situation. The atomic
spin noise spectra and the outgoing field spectra are calculated in both
situations. For suitable parameters both EIT and Raman schemes efficiently
preserve the quantum state of the incident probe field in the transfer process
with the atoms, although a single pass scheme is shown to be intrinsically less
efficient than a cavity scheme
Quantum limits of cold damping with optomechanical coupling
Thermal noise of a mirror can be reduced by cold damping. The displacement is
measured with a high-finesse cavity and controlled with the radiation pressure
of a modulated light beam. We establish the general quantum limits of noise in
cold damping mechanisms and we show that the optomechanical system allows to
reach these limits. Displacement noise can be arbitrarily reduced in a narrow
frequency band. In a wide-band analysis we show that thermal fluctuations are
reduced as with classical damping whereas quantum zero-point fluctuations are
left unchanged. The only limit of cold damping is then due to zero-point energy
of the mirrorComment: 10 pages, 3 figures, RevTe
Organellar carbon metabolism is co-ordinated with distinct developmental phases of secondary xylem
Subcellular compartmentation of plant biosynthetic pathways in the mitochondria and plastids requires coordinated regulation of nuclear encoded genes, and the role of these genes has been largely ignored by wood researchers. In this study, we constructed a targeted systems genetics coexpression network of xylogenesis in Eucalyptus using plastid and mitochondrial carbon metabolic genes and compared the resulting clusters to the aspen xylem developmental series. The constructed network clusters reveal the organization of transcriptional modules regulating subcellular metabolic functions in plastids and mitochondria. Overlapping genes between the plastid and mitochondrial networks implicate the common transcriptional regulation of carbon metabolism during xylem secondary growth. We show that the central processes of organellar carbon metabolism are distinctly coordinated across the developmental stages of wood formation and are specifically associated with primary growth and secondary cell wall deposition. We also demonstrate that, during xylogenesis, plastid-targeted carbon metabolism is partially regulated by the central clock for carbon allocation towards primary and secondary xylem growth, and we discuss these networks in the context of previously established associations with wood-related complex traits. This study provides a new resolution into the integration and transcriptional regulation of plastid- and mitochondrial-localized carbon metabolism during xylogenesis
- …
