143 research outputs found
Benchmark Thermochemistry of N-Methylaniline
© 2015 American Chemical Society. In this work, the standard molar enthalpy of formation in the gaseous state of highly pure N-methylaniline, δfHm° (g, 298.15 K) = 90.9 ± 2.1 kJ·mol-1, has been obtained from the calorimetrically measured energy of combustion converted into the enthalpy of formation, δfHm° (liq, 298.15 K) = 35.9 ± 2.1 kJ·mol-1, and from the molar enthalpy of vaporization, δlgHm = 55.0 ± 0.2 kJ·mol-1, derived from vapor pressure measurements by transpiration method. The enthalpy of formation of N-methylaniline calculated using the quantum chemical G4 method was in excellent agreement with the experimental value. The frequencies of normal vibrations were obtained from the experimental and calculated spectra. Thermodynamic properties of N-methylaniline in the ideal gas state were calculated from molecular and spectral data in the temperature range 100-1500 K
Benchmark thermochemistry of methylbenzonitriles: Experimental and theoretical study
© 2015 Elsevier Ltd. All rights reserved. The gas-phase enthalpies of formation of 2-, 3-, and 4-methylbenzonitrile at T = 298.15 K were studied by combustion calorimetry, and their vaporization enthalpies were determined using the transpiration method. The composite ab initio methods W1-F12 and G4 were used to calculate the gas-phase enthalpies of formation for these three methylbenzonitriles. These theoretical values were found to be in excellent agreement with the corresponding experimental data. The analysis of these data revealed that the interaction between cyano and methyl groups is slightly stabilizing. Using the experimental data a set of group-additivity terms, which allows to estimate thermochemical properties for methyl and cyano substituted benzenes, was proposed. These terms, together with theoretical data, were subsequently used to reassess the thermochemical properties of 2,6-dimethylbenzonitrile and 2,4,6-trimethylbenzonitrile
Catalytic Hydrogen Evolution of NaBH Hydrolysis by Cobalt Nanoparticles Supported on Bagasse-Derived Porous Carbon
As a promising hydrogen storage material, sodium borohydride (NaBH4) exhibits superior stability in alkaline solutions and delivers 10.8 wt.% theoretical hydrogen storage capacity. Nevertheless, its hydrolysis reaction at room temperature must be activated and accelerated by adding an effective catalyst. In this study, we synthesize Co nanoparticles supported on bagasse-derived porous carbon (Co@xPC) for catalytic hydrolytic dehydrogenation of NaBH. According to the experimental results, Co nanoparticles with uniform particle size and high dispersion are successfully supported on porous carbon to achieve a Co@150PC catalyst. It exhibits particularly high activity of hydrogen generation with the optimal hydrogen production rate of 11086.4 mL∙min∙g and low activation energy (E) of 31.25 kJ mol. The calculation results based on density functional theory (DFT) indicate that the Co@xPC structure is conducive to the dissociation of [BH], which effectively enhances the hydrolysis efficiency of NaBH. Moreover, Co@150PC presents an excellent durability, retaining 72.0% of the initial catalyst activity after 15 cycling tests. Moreover, we also explored the degradation mechanism of catalyst performance
Effect of surface modification of the support of hydrotreating catalysts with transition metal oxides (sulfides) on their catalytic properties
Investigation of spillover effect in hydrotreating catalysts based on Co2Mo10− heteropolyanion and cobalt sulphide species
Effect of the nature of binary water-organic solvents on the thermodynamic characteristics of adsorption of certain 1,3,4-oxadiazoles and 1,2,4,5-tetrazines on phenyl-bonded silica gel
Isomerization of Linear Paraffin Hydrocarbons in the Presence of Sulfide CoMo and NiW Catalysts on Al2O3—SAPO-11 Support
Activity of Co(Ni)MoS/Al2O3 catalysts, derived from cobalt(nickel) salts of H6[Co2Mo10O38H4], in hydrogenolysis of thiophene and hydrogen treatment of diesel fraction
Hydrogen spillover effect in the presence of CoS x /Al2O3 and bulk MoS2 in hydrodesulfurization, hydrodenitrogenation and hydrodeoxygenation
Thermodynamic characteristics of adsorption of some 1,3,4-oxadiazoles and 1,2,4,5-tetrazines from water-acetonitrile solutions on phenyl-bonded silica gel
- …
