108 research outputs found
Positional recurrence maps, a powerful tool to de-correlate static and dynamical disorder in distribution maps from molecular dynamics simulations: the case of Nd 2
Endocranial anatomy and phylogenetic position of the crocodylian Eosuchus lerichei from the late Paleocene of northwestern Europe and potential adaptations for transoceanic dispersal in gavialoids
Eosuchus lerichei is a gavialoid crocodylian from late Paleocene marine deposits of northwestern Europe, known from a skull and lower jaws, as well as postcrania. Its sister taxon relationship with the approximately contemporaneous species Eosuchus minor from the east coast of the USA has been explained through transoceanic dispersal, indicating a capability for salt excretion that is absent in extant gavialoids. However, there is currently no anatomical evidence to support marine adaptation in extinct gavialoids. Furthermore, the placement of Eosuchus within Gavialoidea is labile, with some analyses supporting affinities with the Late Cretaceous to early Paleogene “thoracosaurs.” Here we present novel data on the internal and external anatomy of the skull of E. lerichei that enables a revised diagnosis, with 6 autapormorphies identified for the genus and 10 features that enable differentiation of the species from Eosuchus minor. Our phylogenetic analyses recover Eosuchus as an early diverging gavialid gavialoid that is not part of the “thoracosaur” group. In addition to thickened semi-circular canal walls of the endosseous labyrinth and paratympanic sinus reduction, we identify potential osteological correlates for salt glands in the internal surface of the prefrontal and lacrimal bones of E. lerichei. These salt glands potentially provide anatomical evidence for the capability of transoceanic dispersal within Eosuchus, and we also identify them in the Late Cretaceous “thoracosaur” Portugalosuchus. Given that the earliest diverging and stratigraphically oldest gavialoids either have evidence for a nasal salt gland and/or have been recovered from marine deposits, this suggests the capacity for salt excretion might be ancestral for Gavialoidea. Mapping osteological and geological evidence for marine adaptation onto a phylogeny indicates that there was probably more than one independent loss/reduction in the capacity for salt excretion in gavialoids
Linear reciprocating wear of yttria stabilized zirconia based composite coatings developed by thermal spray
Gold Stabilized by Nanostructured Ceria Supports: Nature of the Active Sites and Catalytic Performance
TOSCA Secondary Spectrometer Upgrade. Part I – Analytical and Monte Carlo Study of the Spectral Resolution of TOSCA
On the spectral resolution of the broad-band indirect-geometry time-of-flight neutron spectrometer TOSCA
- …
