509 research outputs found

    Three--body Correlation Effects on the Spin Dynamics of Double--Exchange Ferromagnets

    Full text link
    We present a variational calculation of the spin wave excitation spectrum of double--exchange ferromagnets in different dimensions. Our theory recovers the Random Phase approximation and 1/S expansion results as limiting cases and can be used to study the intermediate exchange coupling and electron concentration regime relevant to the manganites. In particular, we treat exactly the long range three--body correlations between a Fermi sea electron--hole pair and a magnon excitation and show that they strongly affect the spin dynamics in the parameter range relevant to experiments in the manganites. The manifestations of these correlations are many-fold. We demonstrate that they significantly change the ferromagnetic phase boundary. In addition to a decrease in the magnon stiffness, we obtain an instability of the ferromagnetic state against spin wave excitations close to the Brillouin zone boundary.Within a range of intermediate concentrations, we find a strong softening of the spin wave dispersion as compared to the Heisenberg ferromagnet with the same stiffness, which changes into hardening for other concentrations. We discuss the relevance of these results to experiments in colossal magnetoresistance ferromagnets.Comment: 14 pages, 11 figures, published in Phys. Rev. B (1 figure added, references added

    Cross-presentation Is A Source of Tumor Antigens For Multiple Myeloma Immunotherapy

    Get PDF
    Cross-presentation is an essential bridge between the innate and adaptive arms of the immune system where antigen presenting cells (APCs) prime cytotoxic T cell responses. We have recently identified cross-presentation as a mechanism by which solid tumors present exogenous antigens. We therefore hypothesized that multiple myeloma would be capable of cross-presentation as these cells are derived from B cells, known APCs. We explored the capacity of multiple myeloma to cross-present PR1, a human leukocyte antigen (HLA)-A2 nonameric peptide that is derived from neutrophil elastase (NE) and proteinase 3 (P3), and the ability to treat multiple myeloma using PR1-targeting immunotherapies. Here we demonstrate that multiple myeloma cells lack endogenous NE and P3 expression, possess the ability to take up exogenous NE and P3 and cross-present PR1. This process employs the cytosolic antigen presentation machinery including the proteasome, Golgi, and TAP. Subsequent PR1 cross-presentation renders multiple myeloma cells susceptible to PR1-CTL and anti-PR1/HLA-A2 antibody, both in vitroand in vivo. To our knowledge, this is the first report of multiple myeloma cross-presenting tumor antigens. Collectively, our data demonstrate that PR1 is a novel tumor antigen in multiple myeloma and can be effectively targeted using PR1-targeting immunotherapies. Our study suggests that the multiple myeloma antigen repertoire is much larger than previously appreciated, and that there is a new catalogue of potential immunotherapeutic targets in multiple myeloma that can be derived from exogenous antigens

    Strong Electronic Correlation Effects in Coherent Multidimensional Nonlinear Optical Spectroscopy

    Get PDF
    We discuss a many−body theory of the coherent ultrafast nonlinear optical response of systems with a strongly correlated electronic ground state that responds unadiabatically to photoexcitation. We introduce a truncation of quantum kinetic density matrix equations of motion that does not rely on an expansion in terms of the interactions and thus applies to strongly correlated systems. For this we expand in terms of the optical field, separate out contributions to the time−evolved many−body state due to correlated and uncorrelated multiple optical transitions, and use “Hubbard operator” density matrices to describe the exact dynamics of the individual contributions within a subspace of strongly coupled states, including “pure dephasing”. Our purpose is to develop a quantum mechanical tool capable of exploring how, by coherently photoexciting selected modes, one can trigger nonlinear dynamics of strongly coupled degrees of freedom. Such dynamics could lead to photoinduced phase transitions. We apply our theory to the nonlinear response of a two−dimensional electron gas (2DEG) in a magnetic field. We coherently photoexcite the two lowest Landau level (LL) excitations using three time−delayed optical pulses. We identify some striking temporal and spectral features due to dynamical coupling of the two LLs facilitated by inter−Landau−level magnetoplasmon and magnetoroton excitations and compare to three−pulse four−wave−mixing (FWM) experiments. We show that these features depend sensitively on the dynamics of four−particle correlations between an electron−hole pair and a magnetoplasmon/magnetoroton, reminiscent of exciton−exciton correlations in undoped semiconductors. Our results shed light into unexplored coherent dynamics and relaxation of the quantum Hall system (QHS) and can provide new insight into non−equilibrium co−operative phenomena in strongly correlated systems

    Size-dependent Correlation Effects in Ultrafast Optical Dynamics of Metal Nanoparticles

    Full text link
    We study the role of collective surface excitations in the electron relaxation in small metal particles. We show that the dynamically screened electron-electron interaction in a nanoparticle contains a size-dependent correction induced by the surface. This leads to new channels of quasiparticle scattering accompanied by the emission of surface collective excitations. We calculate the energy and temperature dependence of the corresponding rates, which depend strongly on the nanoparticle size. We show that the surface-plasmon-mediated scattering rate of a conduction electron increases with energy, in contrast to that mediated by a bulk plasmon. In noble-metal particles, we find that the dipole collective excitations (surface plasmons) mediate a resonant scattering of d-holes to the conduction band. We study the role of the latter effect in the ultrafast optical dynamics of small nanoparticles and show that, with decreasing nanoparticle size, it leads to a drastic change in the differential absorption lineshape and a strong frequency dependence of the relaxation near the surface plasmon resonance. The experimental implications of our results in ultrafast pump-probe spectroscopy are also discussed.Comment: 29 pages including 6 figure

    3D Facial landmark detection under large yaw and expression variations

    Get PDF
    A 3D landmark detection method for 3D facial scans is presented and thoroughly evaluated. The main contribution of the presented method is the automatic and pose-invariant detection of landmarks on 3D facial scans under large yaw variations (that often result in missing facial data), and its robustness against large facial expressions. Three-dimensional information is exploited by using 3D local shape descriptors to extract candidate landmark points. The shape descriptors include the shape index, a continuous map of principal curvature values of a 3D object’s surface, and spin images, local descriptors of the object’s 3D point distribution. The candidate landmarks are identified and labeled by matching them with a Facial Landmark Model (FLM) of facial anatomical landmarks. The presented method is extensively evaluated against a variety of 3D facial databases and achieves state-of-the-art accuracy (4.5-6.3 mm mean landmark localization error), considerably outperforming previous methods, even when tested with the most challenging data

    Effect of conduction electron interactions on Anderson impurities

    Full text link
    The effect of conduction electron interactions for an Anderson impurity is investigated in one dimension using a scaling approach. The flow diagrams are obtained by solving the renormalization group equations numerically. It is found that the Anderson impurity case is different from its counterpart -- the Kondo impurity case even in the local moment region. The Kondo temperature for an Anderson impurity shows nonmonotonous behavior, increasing for weak interactions but decreasing for strong interactions. The implication of the study to other related impurity models is also discussed.Comment: 10 pages, revtex, 4 figures (the postscript file is included), to appear in Phys. Rev. B (Rapid Commun.

    Observation of inter-Landau-level quantum coherence in semiconductor quantum wells

    Full text link
    Using three-pulse four-wave-mixing femtosecond spectroscopy, we excite a non-radiative coherence between the discrete Landau levels of an undoped quantum well and study its dynamics. We observe quantum beats that reflect the time evolution of the coherence between the two lowest Landau level magnetoexcitons. We interpret our observations using a many-body theory and find that the inter Landau level coherence decays with a new time constant, substantially longer than the corresponding interband magnetoexciton dephasing times. Our results indicate a new intraband excitation dynamics that cannot be described in terms of uncorrelated interband excitations.Comment: 5 pages, 5 figures, to appear in Phys. Rev. B Rapid Communication

    Using digital watermarking to enhance security in wireless medical image transmission

    Get PDF
    This is the published version of the article. Copyright 2010 Mary Ann Liebert Inc.During the last few years, wireless networks have been increasingly used both inside hospitals and in patients’ homes to transmit medical information. In general, wireless networks suffer from decreased security. However, digital watermarking can be used to secure medical information. In this study, we focused on combining wireless transmission and digital watermarking technologies to better secure the transmission of medical images within and outside the hospital. Methods: We utilized an integrated system comprising the wireless network and the digital watermarking module to conduct a series of tests. Results: The test results were evaluated by medical consultants. They concluded that the images suffered no visible quality degradation and maintained their diagnostic integrity. Discussion: The proposed integrated system presented reasonable stability, and its performance was comparable to that of a fixed network. This system can enhance security during the transmission of medical images through a wireless channel.The General Secretariat for Research and Technology of the Hellenic Ministry of Development and the British Council

    Near-bandgap wavelength-dependent studies of long-lived traveling coherent longitudinal acoustic phonon oscillations in GaSb/GaAs systems

    Full text link
    We report first studies of long-lived oscillations in optical pump-probe measurements on GaSb-GaAs heterostructures. The oscillations arise from a photogenerated coherent longitudinal acoustic phonon wave, which travels from the top surface of GaSb across the interface into the GaAs substrate, providing information on the optical properties of the material as a function of time/depth. Wavelength-dependent studies of the oscillations near the bandgap of GaAs indicate strong correlations to the optical properties of GaAs.Comment: 11 pages, 4 figure
    corecore